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Abstract
Dike height optimization is of major importance to the Netherlands as a large part of the country

lies below sea level and high water levels in rivers can cause floods. A cost-benefit analysis is
discussed in Eijgenraam et al. (2010), which is an improvement of the model Van Dantzig (1956)
introduced after a devastating flood in the Netherlands in 1953. We consider the extension of this
model to nonhomogeneous dike rings, which may also be applicable to other deltas in the world. A
nonhomogeneous dike ring consists of different segments with different characteristics with respect
to flooding and investment costs. The individual segments can be heightened independently at
different moments in time and by different amounts, making the problem considerably more complex
than the homogeneous case. We show how the problem can be modeled as a MINLP problem and
present an iterative algorithm that can be used to solve the problem. Moreover, we consider a robust
optimization approach to deal with uncertainty in the model parameters. The method has been
implemented and integrated in software, which is used by the government to determine how the
safety standards in the Dutch Water Act should be changed.

Keywords: flood prevention, MINLP, cost-benefit analysis, robust optimization

1 Introduction
In the Netherlands, dike rings, consisting of dunes, dikes and structures, protect a large part of the
country against flooding. After the serious flood in 1953, a cost-benefit model was developed by Van
Dantzig (1956) to determine optimal dike heights. In Eijgenraam et al. (2010) we improve and extend
Van Dantzig’s model. In that paper we show how to properly include economic growth in the cost-
benefit model, and how to address the question when to invest in dikes. All these models consider dike
rings that consist of a homogeneous dike. This means that all parts in the dike ring have the same
characteristics with respect to investment costs, flood probabilities, water level rise, etc. The objective
of the cost-benefit analysis is to find an optimal balance between investment costs and the benefit of
reducing flood damages, both as a result of heightening dikes. The question then becomes when and
how much to invest in the homogeneous dike ring.

Most dike rings in the Netherlands, however, are nonhomogeneous, consisting of different segments
that each have different characteristics. Differences occur, for instance, if a dike ring protects against
more than one river, each with different characteristics, or if a dike ring contains a sluice. Currently,
there are dike rings with up to ten segments in the Netherlands. In this nonhomogeneous case, it is
not necessary and not desirable to enforce that all these segments are heightened simultaneously and by
exactly the same amount. Hence, the decision problem for the nonhomogeneous case concerns when and
how much to invest in each individual dike segment.
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In the current paper, which is based on Eijgenraam (2007b), Den Hertog and Roos (2009) and
Brekelmans et al. (2009), we consider the extension of the homogeneous case in Eijgenraam et al. (2010)
to the nonhomogeneous case. The research has been carried out as part of a project initiated by the
government. The project’s main goal is to support decision-making with respect to setting new safety
standards for the dike rings in the Netherlands. These safety standards can be derived from an optimal
investment strategy and the resulting flood probabilities. How this can be done is explained in Eijgenraam
(2006) and Eijgenraam (2007a). Here we confine ourselves to a description of the first stage: finding the
optimal investment strategy. In order to lay a firm base for the new standards, all 53 dike rings in the
Netherlands need to be analyzed thoroughly. This requires that particular scenarios can be analyzed
within a reasonable amount of time, where each scenario represents a certain instance of the model
parameters such as economic growth, interest rate, water level rise, flood characteristics, investment
costs and so on.

It is shown in Eijgenraam et al. (2010) that the homogeneous case can be solved explicitly for a specific
choice of the investment cost function. For other investment cost functions the homogeneous case can
be conveniently solved using a dynamic programming method. Unfortunately, this is not possible for the
nonhomogeneous case, since the state space explodes if a dike ring consists of multiple dike segments.
We show how the nonhomogeneous dike height optimization problem can be modeled as a Mixed Integer
Nonlinear Programming (MINLP) problem. The model building blocks have many useful convexity
properties and, depending on the choice of investment cost function, the problem can be written as a
convex MINLP problem. To take into account the uncertainties with respect to many of the model
parameters, we also investigate how robust solutions can be obtained. Due to the complexity of the
model it is not possible to consider the robust optimization method of Ben-Tal et al. (2009). Therefore,
we consider the so-called regret criterion in combination with a finite set of scenarios.

In addition to the MINLP formulation of the decision problem, we construct an iterative optimiza-
tion algorithm that speeds up the solution time considerably. The algorithm has been implemented
in AIMMS, which has subsequently been integrated in user-friendly software to perform the dike ring
analysis. The government will update the safety standards in the Dutch Water Act based on, among
other things, a new Cost-Benefit Analysis carried out by the water-consultancy company Deltares.

This paper is organized as follows. In Section 2 we define the nonhomogeneous dike height optimiza-
tion problem and transform it into a MINLP problem. Additionally, we consider a robust optimization
version of this problem. Section 3 discusses how the problem can be solved in practice and introduces an
optimization algorithm that can be used for this purpose. Numerical results are presented in Section 4
and concluding remarks are given in Section 5.

2 Nonhomogeneous Dike Height Optimization Problem
2.1 Problem Formulation
In this section we present the nonhomogeneous dike height optimization problem. The problem is an
extension of the homogeneous problem introduced by Eijgenraam et al. (2010). We shall elaborate on
the differences with the homogeneous case, and the reader is referred to Eijgenraam et al. (2010) for the
foundation of the common model parts. A dike ring, which protects a certain area of land against water
floods, is said to be nonhomogeneous if it consists of, say L (L > 1) different segments. All segments
can be heightened independently of each other. Moreover, each segment has its own properties with
respect to investment costs and flood probabilities. To indicate the dependence of a model parameter
on a particular dike segment, a subscript ` (` = 1, . . . , L) will be added to this parameter. The set of all
segments is denoted by L.

The objective is to find an investment plan that minimizes the expected total costs. Only investments
in the finite planning horizon [0, T ) are considered. An investment plan is represented by a tuple (U, t),
with U ∈ RL×(K+1)

+ and t = (t0, t1, . . . , tK)T . The vector t represents the possible timings of dike
segment heightenings, where t0 = 0 < t1 < · · · < tK < T . Hence, K + 1 is an upper bound on
the number of segment heightenings in the planning horizon. For notational convenience, we denote
tK+1 = T . The matrix U represents the segment heightenings, where the element U`k = u`k is the
heightening (cm) of segment ` at time tk (` = 1, . . . , L, k = 0, . . . ,K). Of course, heightenings are
assumed to be nonnegative. If u`k = 0, then this means that segment ` is not heightened at time tk.
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The `-th row of U, with the K + 1 heightenings of dike segment `, is denoted by u(`).
Throughout the remainder of this paper we use the following notation for the cumulative segment

heightening and the absolute segment height at time t (t ≥ 0):

h`t =
∑
k:tk≤t

u`k, and H`t = H−`0 + h`t.

where H−`0 is the absolute height of segment ` immediately prior to a possible heightening at time t = 0.
For notational convenience, we also use h`k = h`tk and H`k = H`tk . Note that it follows from this
definition that the segment height is a nondecreasing step function. Moreover, this implicitly means that
heightenings are measured at the moment that the investment actions are completed. A lead time is not
modeled. As a consequence, the existence of a sometimes considerable lead time between the moment
that it becomes clear that action is desirable and the final completion of the investment has to be taken
care of in the definition of an appropriate safety standard and the accompanying official test procedures
(see Eijgenraam 2006).

The flood probability of segment ` at time t is given by

P`t = P−`0 exp (α`(η`t− h`t)), (1)

with P−`0 (1/year) the initial flood probability, α` (1/cm) the parameter of the exponential distribution
for extreme water levels and η` (cm/year) the structural increase of the water level. Both the hydraulic
conditions and the quality of the dike segment are summarized by one indicator: height above the level
that corresponds to the flood probability P`0. This presupposes that actual problems with piping and the
quality of some of the structures are solved before further improvements in the safety level are considered.
Studies by Rijkswaterstaat (the implementing agency of the Ministry of Infrastructure and Environment)
(Silva and Stijnen (2005) and Stijnen et al. (2006)) confirm that under these conditions overtopping and
overflow will indeed be the determining failure mechanism and that the weakest segment fully determines
the flood probability of the entire dike ring. Hence, we define the flood probability of the entire dike ring
at time t by Pt = max`∈L P`t.

A property that all segments have in common is that they protect the same area of land. Hence, if
there is a flood, the damage does not depend on the segment in which a breach occurs. Furthermore, the
potential damage costs increase in time with the economic growth rate γ. The damage costs do, however,
also depend on the resulting height of the water level within a dike ring after a flood. In particular, along
rivers the damage costs increase by the rise in the height of the lowest segment (in absolute height).
Putting all this together yields the following damage costs, at time t, in the case of a nonhomogeneous
dike ring:

Vt = V −0 exp
(
γt+ ζ(min

`∈L
H`t −min

`∈L
H`0)

)
,

with V −0 the initial damage costs and ζ (1/cm) the parameter that represents the increase in damage
costs depending on the height of the lowest dike segment.

The expected damage costs at time t is given by the product of the flood probability and the damage
costs:

St = PtVt = max
`∈L

S−`0 exp
(
β`t−α`h`t+ζ(min

`∈L
H`t −H−`00)

)
, (2)

where S−`0 = P−`0V
−

0 , β` = α`η` + γ and `0 = arg min`H−`0. By using the fact that the segment heights
remain unchanged in the interval [tk, tk+1), the total expected damage in this interval can be written as∫ tk+1

tk

St exp(−δt)dt = exp(−ζH`00)
∫ tk+1

tk

exp(−δt+ ζ min
`∈L

H`t) max
`∈L

(
S−`0 exp(β`t− α`h`k)

)
dt, (3)

where δ is the discount rate.
From an optimization point of view there are two problems with the integral in (3):

(i) The minimum absolute segment height min`H`t cannot be incorporated in an optimization model
as a convex constraint.

(ii) Even though the segment heights do not change during the interval [tk, tk+1), the segment flood
probabilities P`t as defined by (1) increase monotonically in time. Hence, the segment ` for which
the maximum flood probability is obtained may change during the interval [tk, tk+1).
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If we want to use (3) in a MINLP model, then we have to make some assumptions about these two issues.
The minimum operator in (3) refers to the fact that the size of the damage depends on the segment that
is lowest in absolute height. Since in practice it is usually clear which of the segments along rivers is the
lowest in absolute height, it is assumed that this segment is known in advance. Let this dike segment
be denoted by `∗. It turns out that, for the dike rings in the Netherlands, this assumption is always
satisfied.

An obvious approach to dealing with the maximum operator in (3) is to interchange the integral and
the maximum operator. Note that this yields a lower bound for (3), which introduces an error only if the
segment for which the maximum is obtained changes within the interval [tk, tk+1). Clearly, the effect of
the error will be more serious if the length of the interval is longer, and consequently this should be taken
into account when defining the intervals. In the implementation of the MINLP model to be introduced in
Section 2.2, we shall make sure that these intervals are small enough to guarantee a sufficiently accurate
approximation.

Using the two assumptions from above, (3) can be approximated by

Ek(U, t) = max
`∈L

S−`0
β1`

exp
(
ζ(H`∗tk −H

−
`00)− α`h`k

)[
exp(β1`tk+1)− exp(β1`tk)

]
, (4)

with β1` = β` − δ. The total expected damage in the planning horizon [0, T ) is then approximated by

E(U, t) =
K∑
k=0
Ek(U, t).

Note that for a fixed investment plan, it is possible to evaluate the size of the approximation error, since
we can accurately evaluate the minimum and maximum operators in (3). This evaluation can be used
to obtain a true comparison between investment plans with different discretization schemes.

To take into account the period after the planning horizon, it is assumed that there are no changes to
the expected damage after T , and hence no more investments are required. Thus, the discounted expected
damage after the planning horizon is ST

∫∞
T

exp(−δt)dt, which can be approximated analogously to (4),
i.e.,

R(U, t) = max
`∈L

S−`0
δ

exp
(
β1`T − α`h`K + ζ(H`∗tK −H−`00)

)
. (5)

The investment costs associated with the heightening of segment ` at time tk depend, of course, on the
actual amount of the heightening. The costs, however, are assumed to be independent of the heightening
of other segments, regardless of the moments of these heightenings. We use the same investment cost
function as introduced by Eijgenraam et al. (2010), and refer to it as exponential investment costs. For
any positive heightening u`k, the exponential investment costs are given by

Ie`k(u(`)) = (c` + b`u`k) exp
(
−λ`

∑k
i=0 u`i

)
, u(`) ∈ RK+1

+ . (6)

Hence, the investment costs depend on the amount of the heightening and the amount of the total height-
ening up to time tk. Since there are no investment costs when there is no heightening, the investment
cost function is discontinuous at zero, i.e.,

I`k(u(`)) =
{
Ie`k(u(`)) if u`k > 0,
0 if u`k = 0.

As in Eijgenraam et al. (2010), we also consider the quadratic investment costs

Iq`k(u(`)) = φ`0 + φ`1u`k + φ`2
(∑k

i=0 u`i
)2
, u(`) ∈ RK+1

+ . (7)

The total discounted investment costs in the planning horizon, in the case of the exponential investment
cost function, are then given by

I(U, t) =
L∑
`=1

K∑
k=0
I`k(u(`)) exp(−δtk).
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Since the objective is to minimize the sum of the investment costs and expected damage costs, the
resulting optimization model can now be formulated as

min I(U, t) + E(U, t) +R(U, t)

s.t. U ∈ RL×(K+1)
+ , t0 = 0 < t1 < · · · < tK < T.

(8)

2.2 MINLP Model
This section discusses how the general dike height optimization problem (8) can be transformed into a
mathematical optimization model that can be solved using optimization solvers. The problem as stated
by (8) can be considered as a Non-Linear Programming (NLP) model since the decision variables U and
t are continuous and the objective function’s components are clearly nonlinear. From an optimization
point of view, however, there are some issues that prevent us from actually solving the problem as stated
by (8): the discontinuity of the investment cost functions at zero, and the approximation error of the
expected damage in (4). The latter issue forces us to discretize the planning horizon, since continuous time
variables could result in large intervals and consequently serious approximation errors. The discontinuity
of the investment cost function can be resolved by discretization of the heightenings as well, or by adding
binary decision variables that indicate whether a heightening is actually greater than zero or not. If both
the moments and the amounts of the heightenings are discretized, then, theoretically, the problem can
be solved using the dynamic programming approach as in the homogeneous case in Eijgenraam et al.
(2010). Unfortunately, the state space grows too large if multiple segments are considered, which implies
that the dynamic programming approach is not applicable. Therefore, we consider a MINLP approach
with discretization of the planning horizon.

Next, the reformulation of problem (8) into a MINLP model is discussed. We assume that a dis-
cretization scheme t = (t0, . . . , tK+1) with t0 = 0 < t1 < · · · < tK < tK+1 = T has been prefixed. The
MINLP model then becomes:

min
L∑
`=1

K∑
k=0

exp(−δtk)(c`y`k + b`u`k) exp
(
−λ`

∑k
i=0 u`i

)
+
∑K
k=0 Ek +R (9a)

s.t. Ek ≥
S−`0
β1`

exp
(
ζ(H`∗k −H−`00)− α`h`k

)[
exp(β1`tk+1)− exp(β1`tk)

]
, ` = 1, . . . , L, k = 0, . . . ,K,

(9b)

R ≥
S−`0
δ

exp
(
β1`T − α`h`K + ζ(H`∗K −H−`00)

)
, ` = 1, . . . , L, (9c)

h`k =
k∑
i=0

u`i, ` = 1, . . . , L, k = 0, . . . ,K,

(9d)
H`k = H−`0 + h`k, ` = 1, . . . , L, k = 0, . . . ,K,

(9e)
0 ≤ u`k ≤ y`kM, y`k ∈ {0, 1}, ` = 1, . . . , L, k = 0, . . . ,K,

(9f)
h`k, H`k, Ek, R ∈ R, ` = 1, . . . , L, k = 0, . . . ,K.

(9g)

The objective function (9a) includes the exponential investment costs with the fixed cost component c`
multiplied by y`k. The binary variables y`k combined with (9f) are required to ensure that either u`k = 0
and the investment costs in the objective function are zero, or u`k > 0 and the investment costs are
equal to Ie`k(u(`)). Of course, it is also possible to use the quadratic investment cost function instead of
the exponential. In that case both the fixed cost component and the quadratic component have to be
multiplied by the binary variable y`k, which yields the objective function

L∑
`=1

K∑
k=0

exp(−δtk)
[
φ`0y`k + φ`1u`k + φ`2

(∑k
i=0 u`i

)2
y`k
]

+
∑K
k=0 Ek +R (10)
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that can be used instead of (9a). In (9f), M denotes an upper bound of the highest possible dike
heightening. The auxiliary variables Ek and R represent the expected damage costs in [tk, tk+1) and
[T,∞) respectively. Constraints (9b) and (9c) are used to model the damage costs as convex constraints
without using the maximum operator, as does occur in (4).

It is clear that the optimal solution to problem (9) is fully determined by the decision variables u`k
(` = 1, . . . , L, k = 0, . . . ,K). These decision variables could be considered the “pure” decision variables
of problem (9), which, together with the discretization scheme t, represent the investment plan (U, t)
that answers the fundamental questions of when and how much should be invested in dike heightening.
Moreover, for a fixed investment plan (U, t), the objective function (9) is equal to

Z(U, t) = I(U, t) + E(U, t) +R(U, t).

2.3 Robust Optimization
It is clear that model (9) requires the input of several parameters, which in practice are often uncertain.
In this section these uncertainties are taken into account. We assume, however, that all parameters are
fixed, i.e. that they do not change over time. After all, we are interested in finding a robust solution,
that is, a solution that performs well for a broad range of realistic instances of model parameters.

In the literature, several approaches have been proposed to deal with uncertain parameters. One
class of methods assumes that a certain probability distribution can be projected on the uncertain
parameter’s values. For the application of dike height optimization in the Netherlands, the availability of
this information is very unrealistic. The robust optimization approach by Ben-Tal et al. (2009) assumes
that the uncertain parameters are contained in a so-called uncertainty set. However, depending on the
shape of this uncertainty set, this would produce either a trivial or an untractable model.

For the reasons mentioned above, we consider the regret approach combined with a finite set of
scenarios. A scenario represents an instance of all (uncertain) model parameters that the decision-maker
sees as a possible outcome of these parameters. Of course, it is the joint responsibility of the institution
that actually performs the cost-benefit analysis and the decision-maker to create a set of scenarios that
is a representative reflection of the space of uncertain parameter values. Let S = {1, . . . , S} denote this
finite set of S scenarios. We add a superscript s to the model parameters to indicate the reference to
the parameter values of scenario s.

The fundamental problem of parameter uncertainty is that a decision on the investment plan has to
be made before the uncertain parameter values become known. Once the actual scenario is known, a
measure of the quality of the decision can therefore be obtained by the difference between the costs of
the chosen investment plan within the framework of the actual scenario and the costs of the optimal
investment plan belonging to the actual scenario. This difference is called the regret. Formally: the
regret of a given investment plan (U, t) for scenario s is defined by

regret(U, t, s) = Zs(U, t)− Zs∗, (11)

where Zs∗ is the optimal expected total costs for scenario s, i.e., Zs∗ = minU{Zs(U, t) : U ∈ RL×(K+1)
+ }.

We use the regret criterion to produce two robust optimization approaches. The first approach is
to find an investment plan that minimizes the average regret over all scenarios. Mathematically, this is
equivalent to

min
U

{
1
S

S∑
s=1

(
Zs(U, t)− Zs∗

)
: U ∈ RL×(K+1)

+

}
. (12)

Note that it can be shown that this is equivalent to minimizing the total costs over all scenarios, because
the Zs∗ only affect the objective value, and not the optimal robust solution.

The second robust optimization approach is to minimize the maximum regret over all scenarios, which
can be written as

min
z,U

{
z ∈ R : z ≥ regret(U, t, s)∀s ∈ S, U ∈ RL×(K+1)

+

}
. (13)

Both these robust optimization approaches can be formulated as a MINLP model very similar to
(9). The robust models have to include different variables for the auxiliary variables Ek and R for each
scenario. However, the decision variables u`k and y`k are common for all scenarios, since we are looking
for only one investment plan.
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3 Implementation Issues
One of the project goals, set by Deltares, is that the problem can be solved for all major dike rings in a
reasonable amount of time without the necessity to tune the algorithm’s settings for specific dike rings.
Hence, we are not designing a solution algorithm for one particular instance of the problem. This section
discusses the implementation of a solution algorithm for the nonhomogeneous dike height optimization
problem. A heuristic algorithm is needed because MINLP (9) cannot be solved in reasonable time for
dike rings with more than 6 segments. The algorithm presented here has been implemented in AIMMS
and the software company HKV has integrated this model in the software package OptimaliseRing (Duits
2009a,b), used by the actual performers of the cost-benefit analysis.

Section 3.1 discusses the selection of the MINLP solver used for the dike height optimization problem.
Sections 3.2 and 3.3 discuss the two main ideas of the iterative optimization algorithm, which is presented
in Section 3.4. An illustrative example of the algorithm is given in Section 3.5.

3.1 Solver Selection
To be able to solve a MINLP one needs a MINLP solver. MINLPs can be highly complex and therefore
the performance of MINLP solvers can vary vastly for different problems. The performance differences
may pertain to the quality of the final solution as well as to the solution time. An extensive overview
of MINLP solvers is given by Bussieck and Vigerske (2011). The most notable distinction one can make
between MINLP solvers is whether the solver aims to solve convex or nonconvex MINLPs. The first
class of solvers is usually based on the outer approximation algorithm by Duran and Grossmann (1986)
using either NLP or MIP relaxations. These solvers ensure global optimality only for convex problems,
but they can serve as a heuristic for nonconvex problems. The second class of solvers ensures global
optimality, and to reach this goal a convexification step (Tawarmalani and Sahinidis 2002) has to be
added to the algorithm.

The nonhomogeneous dike height optimization problem formulated by MINLP (9) is not a convex
MINLP. However, in Appendix A it is shown that the problem possesses many useful convexity properties.
For example, if the quadratic investment cost function is used, the MINLP model (9) can be reformulated
into a convex MINLP model, see Appendix A.4. This is not the case for the exponential investment
cost function. Hence, it is not immediately obvious whether a convex or nonconvex solver is most
suitable for solving the dike height optimization problem. We have tested the solver performance for
two typical solvers: AOA from the class of convex solvers, and BARON from the class of nonconvex
solvers. Both solvers can be called from the modeling tool AIMMS, which we used to implement the
dike height optimization problem. AOA is an outer approximation algorithm inside AIMMS and uses
general purpose NLP and MIP solvers to solve subproblems. In our experiments we used CONOPT for
the NLP subproblems, and CPLEX for the MIP subproblems.

After a limited number of experiments it turned out that BARON’s solution time is too long for our
practical purposes. Apparently, the effort that BARON has to make to guarantee a global solution is too
high. Even to obtain a reasonable suboptimal solution requires an unacceptable amount of time. The
results of AOA, on the other hand, did yield promising results, and as a consequence we selected AOA
as our preferred solver for the nonhomogeneous dike height optimization problem.

3.2 Discretization Scheme
The MINLP (9) requires a discretization scheme t0 = 0 < t1 < · · · < tK < tK+1 = T to be defined.
Several things should be kept in mind when choosing a discretization scheme. First of all, the discretiza-
tion scheme determines the problem size. For any solution method that is selected to solve MINLP (9),
the problem size will be an important factor with respect to the solution time. Besides the number of
segments L, which is exogenously determined, the problem size is determined by the discretization of
the planning horizon [0, T ) into K + 1 decision moments: t0 = 0 < t1 < · · · < tK < T . It is important to
note that the problem formulation (9) does not require equidistant interval sizes, even though the most
natural choice of a discretization scheme would satisfy this property. In Appendix B.2.1 it is shown how
this flexibility can be exploited. Moreover, it is interesting to compare solutions obtained by applying
different discretization schemes to MINLP (9) for the same underlying dike height optimization problem.
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Secondly, the interval sizes tk−tk−1 are important for the accuracy of the expected damage determined
by equation (4). The reason for this is that the expected damage is approximated by interchanging the
integral and maximum operators in the original definition of the expected damage. The approximation
will be more accurate if small interval sizes are used. Hence, from this perspective it is desirable to have
many small intervals, and consequently a large K. Computational results have shown, however, that for
almost all realistic problems the approximation is very acceptable for equidistant intervals of ten years.
Note that this boils down to “rounding” the decision moment up or down with a maximum of five years,
which is not that much if you consider the intervals between segment heightenings.

Finally, another aspect to keep in mind is that the moments at which a dike heightening can occur
are restricted by the discretization scheme. Therefore, having smaller intervals offers more flexibility to
determine the exact moments of dike heightenings, which can improve the objective value of the problem.

A good discretization scheme should balance the diversity of the investment plans it allows and the
accuracy of the approximations in the model against the solution time of the resulting problem. We try
to find this optimal balance in two stages. In the first stage, a rough grid of possible decision moments
tk (k = 0, 1, . . . ,K) is selected, which offers less flexibility in selecting an investment plan and could
result in less accurate approximations of the expected damage. The advantage, however, is that less
decision variables are required and that the solution time decreases significantly. A rough discretization
scheme could therefore be used to obtain a good initial solution to the problem, which can be exploited
in the second stage of the algorithm. The problem can now be solved with a finer discretization scheme,
and by considering only investment plans in the neighborhood of the initial solution it is not necessary
to increase the number of decision variables. Numerical evidence shows that this is a good approach to
obtain solutions on a finer grid of decision moments.

Appendix B.2 describes in greater detail how the discretization scheme can be initialized and how it
can be refined in the second stage by using the results from the first stage.

3.3 Nearly-Redundant Constraints
With respect to the dike height optimization problem, it is obvious that the optimal solution will satisfy
some general properties that can be deduced using common sense or by mathematical analysis of the
problem. If a certain property of the MINLP’s optimal solution is known, then the feasible region of
the model can be reduced by adding this property to the model as a constraint. This constraint is
not supposed to change the MINLP’s optimal solution, and it is therefore called redundant. However,
by including a redundant constraint the MINLP solver may be able to find the optimal solution a lot
quicker.

If a redundant constraint is added to an optimization problem, then it is important to determine
whether this constraint is redundant for all possible instances of the problem, or just for a particular
instance of interest. For example, in practice it is unlikely that a dike heightening smaller than 1cm can
ever be optimal, yet it is fairly obvious that instances can be invented for which this is in fact optimal.
For the dike height optimization problem, many such “rules of thumb” can be formulated that cannot
be proven to apply to all possible instances of the general problem. Moreover, many rules of thumb
include some kind of wild guess, such as the 1cm boundary in the previous example. This results in two
contradictory objectives. On the one hand, it is desirable to set the boundary very tight so that a large
part of the original feasible region can be neglected. On the other hand, the boundary has to be set such
that the resulting constraint is indeed redundant for all instances of interest.

Due to the dike height optimization problem size, which of course depends on L and K, it is very
interesting to consider redundant constraints. Moreover, it can prove useful to use “nearly” redundant
constraints, which for our purposes are defined as constraints that are satisfied by optimal solutions or
almost optimal solutions to most practical instances of MINLP (9). Nearly-redundant constraints can
be used in an iterative setting, for example to find a good solution very quickly in the initial stage of an
algorithm. In the subsequent stages of the algorithm, the actual redundancy of the constraints can be
tested by using the solution obtained in the initial stage.

The remainder of this section discusses two nearly-redundant constraints that turned out to be
particularly useful for the dike height optimization problem in the Netherlands.
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Figure 1: Flood probabilities of two dike segments having heightenings in quick succession.

3.3.1 Period Between Heightenings of the Same Segment.

Consider two successive heightenings of the same dike segment `. Since fixed costs are incurred for each
segment heightening, it makes little sense to schedule the two heightenings shortly after each other. In
such a case, a single dike heightening carried out at the same time as the first heightening with an amount
equal to the sum of the two heightenings will be cheaper, because it saves on fixed costs and the expected
damage in the intermediate period is smaller. Of course, the definition of “shortly after each other” is not
self-evident, and will depend on the parameter settings. However, if we consider the practical application
in the Netherlands, then a minimum period of 40 years between dike heightenings of the same segment
seems very reasonable, except for sand suppletion along the coast. A possible exception to this rule
applies to the start of the planning horizon. In many cases, dike heightenings of different segments turn
out to occur at the same point in time. Hence, at the start of the planning horizon a dike segment has
to be brought into the same “rhythm” as the other segments. In such a case the optimal period between
the first two dike heightenings of a segment can be smaller than defined by this rule of thumb, because
the benefit of the first dike heightening is very high.

For the property described above, the following constraint can be added to the MINLP formulation:∑
i: tk<ti≤tk+Yp

y`i ≤ 1, ∀`, k : Ys ≤ tk ≤ T − Yp, (14)

where Yp is the minimum period between dike heightenings, and Ys is the number of years at the start
of the planning horizon that is not taken into account.

3.3.2 Groups of Segments Heightened at the Same Time.

A common property of the optimal solution to many dike height optimization problems is that the
heightening of different segments takes place at the same point in time. This does not imply that all
segments should always be heightened at the same time. The point is that it is very unlikely that two
segments are heightened in quick succession. How to explain this? Recall that the driving motivation to
heightening dikes is to decrease the expected damage by decreasing the flood probability. Since the flood
probability is equal to the maximum flood probability, measured across all dike segments, the overall
benefit of updating segment A five years prior to segment B is usually very low. This is illustrated by
Figure 1, where the heightening of segment A at time t decreases the total flood probability by just a
small amount, since the flood probability of segment B is just slightly smaller than segment A’s flood
probability immediately prior to segment A’s heightening.

It is very easy to enforce that all segments are heightened simultaneously, with the possible exception
of a short period at the start of the planning horizon. This is achieved by the constraints

y1k = y`k, ` = 2, . . . , L, k : tk ≥ Yf , (15)

9



with Yf the interval at the start of the planning horizon that is excluded. This constraint performs
remarkably well when it is added to MINLP (9): the solution time decreases drastically for problems
with many segments, and it does not increase the optimal objective value for many practical problems,
so the constraint is actually redundant for these problems. Unfortunately, for some problems constraint
(15) will increase the optimal objective value by an unacceptable amount. Therefore, it cannot be
permanently added to the problem. However, constraint (15) can still be used in an iterative algorithm
to quickly obtain a reasonable solution to the original problem.

The reason that constraint (15) sometimes affects the optimal solution of the problem is that some dike
rings have one or more segments with very different characteristics than the other segments. Therefore,
we would like to relax constraint (15) such that it only applies to segments that have more or less the
same characteristics. Let G be such a subset of L. The relaxed constraints then become

y`′k = y`k, ∀`, k : ` ∈ G, ` 6= `′, tk ≥ Yf , (16)

with `′ an arbitrary segment in G. Note that (15) is a special case of (16) with G = L.
In Appendix B.3 two methods are proposed that can be used to partition L into two disjoint subsets

G1 and G2 for which constraint (16) will be imposed.

3.4 Iterative Algorithm
This section presents the iterative heuristic algorithm based on the ideas of the previous sections. The
iterative algorithm is based on the following generic MINLP, which consists of the basic model (9), the
constraint (14), two instances of constraint (16) and constraints related to refining the discretization
scheme:

min
∑
`∈L

K∑
k=0

exp(−δtk)(c`y`k + b`u`k) exp
(
−λ`

∑k
i=0 u`i

)
+
∑K
k=0 Ek +R (17a)

s.t. Ek ≥
S`0
β1`

exp
(
ζ(H`∗k −H`00)− α`h`k

)[
exp(β1`tk+1)− exp(β1`tk)

]
, ` = 1, . . . , L, k = 0, . . . ,K,

(17b)

R ≥ S`0
δ

exp
(
β1`T − α`h`K + ζ(H`∗K −H`00)

)
, ` = 1, . . . , L, (17c)∑

i: tk<ti≤tk+Yp

y`i ≤ 1, ∀`, k : Ys ≤ tk ≤ T − Yp,

(17d)
y`1k = y`k, ∀`, k : ` ∈ G1, ` 6= `1, tk ≥ Yf ,

(17e)
y`2k = y`k, ∀`, k : ` ∈ G2, ` 6= `2, tk ≥ Yf ,

(17f)

h`k =
k∑
i=0

u`i, k = 0, . . . ,K, ` ∈ L, (17g)

y`k = 0, u`k = 0 k ∈ F, ` ∈ L, (17h)
H`k = H`0 + h`k, k = 0, . . . ,K, ` ∈ L, (17i)
0 ≤ u`k ≤ y`kM, y`k ∈ {0, 1}, k = 0, . . . ,K, ` ∈ L, (17j)
h`k, H`k, Ek, R ∈ R, k = 0, . . . ,K, ` ∈ L, (17k)

where `1 and `2 are arbitrary elements from the sets G1 and G2 respectively.
The basic idea of the iterative algorithm is as follows. First, a discretization scheme is generated

that does not result in too many (binary) decision variables for the generic problem, such that it can be
solved in a reasonable amount of time. Second, the generic MINLP (17) is solved for different instances
of the nearly-redundant constraints (17e) and (17f). This should give at least one fairly good solution.
Finally, the algorithm zooms in on the best solution found so far by refining the discretization scheme
in the neighborhood of segment heightenings and defining the set of uninteresting decision moments F
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(cf. Appendix B.2.2). Constraints (17h) guarantee that no solutions in the uninteresting region of the
time horizon are considered. Additionally, the tolerance for the stopping criterion could be tightened to
obtain the best possible result out of this final solve.

Besides a maximum solution time per solve of the generic model, a relative tolerance stop criterion
is used in the AIMMS implementation. This relative tolerance stop criterion is satisfied if the objective
value’s lower bound, obtained by AOA’s MIP subproblem, is within a certain percentage of a solution’s
objective value.

The iterative optimization algorithm is formally defined by:

1. Define a discretization scheme t according to the method in Section B.2.1.

2. Solve the generic MINLP (17) for all promising partitions G1 and G2 according to Appendix B.3
and compute the true objective values by getting rid of the approximation errors in the expected
damage.

3. Select the solution with the lowest true objective value and select corresponding segment subsets
G1 and G2.

4. Refine the discretization scheme according to the method in Appendix B.2.2 and determine which
decision moments that are outside the range of interest, i.e., define the set F ⊂ {0, 1, . . . ,K}.

5. Tighten the relative stop criterion and resolve MINLP (17) with the selected subsets G1 and G2
from step 3 and the updated discretization scheme and associated set F from step 4.

In the next section, an illustrative example of the iterative algorithm is presented. In Appendix B.4
the performance of the algorithm is analyzed to show that the reduction in solution time is obtained at
no or a very small deterioration of the objective value.

3.5 Example Iterative Algorithm
This section discusses some results of the iterative algorithm from Section 3.4. Recall that the algorithm
iteratively solves the generic MINLP (17) for different partitions {G1,G2} of L, and different discretization
schemes. In Appendix B.3 it is proposed to use partitions by selecting individual segments or by ranking
the segments based on flood probability related parameters. In addition, partitions based upon differences
in investment costs are proposed. In the current database used by Deltares such instances are not present,
hence these partitions are not applied in practice. However, these cost-based partitions are tested on
artificial test problems and appear to be valuable if significant differences in investment costs are found.

The iterative algorithm has been applied to dike ring 17, IJsselmonde, which has 6 segments, using
the exponential investments cost function. Table 1 gives a summary of the algorithm’s iterations. Note
that the iteration numbers correspond to the subsequent solves of the generic MINLP and not the steps
of the algorithm. The third and fourth column show the generic MINLP’s objective value and the true
objective value of this solution, respectively. The last column shows the solution time of the solve in
minutes, where the decimal fraction refers to the fraction of one full minute.

The first iteration corresponds to the case G1 = L, which forces simultaneous heightenings of all dike
segments. In the subsequent solves one segment is allowed to have heightenings at different times than
all other segments (cf. (18) in Appendix B.3). There are only marginal improvements in objective value
for most segments, except for segment 5-Oude Maas. In the next three iterations of the algorithm the
segments are partitioned into two subsets based on the segments’ flood probability parameters (cf. (20)
in Appendix B.3). In iteration 8 the segments are partitioned into a subset with segments 1-Nieuwe
Maas and 5-Oude Maas, and a subset with the other four segments. It can be seen that this solution
yields an additional benefit compared to iteration 6, where only dike segment 5-Oude Maas is released
from the other segments. The other two partitions tried in iteration 9 and 10 do not yield any further
improvement, hence iteration 8 gives the best objective value of all MINLP variations. Therefore, the
solution from iteration 8 is used to refine the discretization scheme and the generic MINLP is solved using
this refined discretization scheme, with the relative tolerance tightened from 1% to 0.25% in iteration 11.
Again the objective value improves, which indicates that the initial discretization scheme was too rough
and that the timing of the dike heightenings can be improved.

Another observation to be drawn from Table 1 is that there are indeed differences between the MINLP
objective and the true objective. The difference represents the approximation error of the expected
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Iteration Description

MINLP
objective
(Me)

True
objective
(Me)

Solution
time
(min)

1 All at the same time 388.9774 389.4514 0.12
2 Free segment 1-Nieuwe Maas 388.4750 389.0692 0.16
3 Free segment 2-Nieuwe Maas 388.8734 389.3527 0.31
4 Free segment 3-Noord 388.8734 389.3527 0.16
5 Free segment 4-Noord 388.9774 389.4514 0.26
6 Free segment 5-Oude Maas 379.3647 380.4492 0.34
7 Free segment 6-Oude Maas 388.8734 389.3527 0.37
8 Sorted groups no. 1 377.7331 378.7116 0.34
9 Sorted groups no. 2 382.7661 383.6943 0.55
10 Sorted groups no. 3 388.8734 389.3527 0.61
11 Refine best solution 377.0474 377.3725 0.10

Table 1: Algorithm iterations for dike ring 17.

damage, caused by interchanging the integral and maximum operator in (3). This approximation error
is actually quite moderate, especially if one considers the impact that many uncertain model parameters
could have on this objective value.

4 Numerical Results
As discussed in Section 3, the optimization algorithm has been implemented in AIMMS using the AOA
solver. All numerical results in this section were obtained using AIMMS 3.8.5 with CPLEX 11.2 and
CONOPT 3.14G on a PC with an Intel Core 2 CPU processor.

A database with data about the dike rings in the Netherlands was provided by Deltares. This
database contains all relevant parameters for the nonhomogeneous dike height optimization problem,
the only exception being the parameters for the quadratic investment cost function. These missing
parameters were estimated by approximating the exponential investment cost function (see Brekelmans
et al. 2009, Appendix D).

The main results for the nonhomogeneous dike height optimization problem are presented in Sec-
tion 4.1. In Section 4.2 the results of the homogeneous model are compared to the results of the
nonhomogeneous model. Robust optimization results are discussed in Section 4.3.

4.1 Results Nonhomogeneous Problem
4.1.1 Overview Dike Rings.

A selection of the dike rings from Deltares’ database were optimized by our optimization algorithm. For
all experiments we used common values for the discount rate per year (δ = 0.0247) and the economic
growth rate per year (γ = 0.019). A summary of the results for the exponential investment costs is
shown in Table 2. The first two columns give the dike ring number along with the number of segments
in the dike ring. The third column gives the MINLP model’s objective value of the algorithms final
iteration. The fourth column gives a true evaluation of this objective value that does not suffer from
an approximation error in the expected damage. It can be seen that the MINLP’s objective is indeed a
lower bound and that the approximation error is very modest, which indicates that the approximation
of the expected damage is suitable for our MINLP model.

The fifth column in Table 2 gives the solution time in minutes. There does not appear to be a clear
relationship between the number of segments and the solution time. This is mainly due to the fact that
the discretization scheme is created in such a way that the number of resulting decision variables does
not depend on the number of segments. In other words, a dike ring with more segments has a rougher
discretization scheme than a dike ring with less segments, as explained in Appendix B.2.1.

For the same set of experiments, Table 3 shows the moments of the first three updates of the dike
rings, which could correspond to one or more segment heightenings taking place at the same point in
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Dike ring Segments

MINLP
objective
(Me)

True
objective
(Me)

Solution
time
(min)

10 4 107.51 107.51 0.52
13 4 10.38 10.38 0.07
14 2 94.04 94.04 0.54
16 8 1044.45 1046.08 6.24
17 6 377.05 377.37 3.33
21 10 217.40 217.71 2.23
22 5 373.98 374.08 7.62
36 6 395.65 395.65 60.19
38 3 136.26 136.29 59.33
43 8 486.72 488.10 1.65
47 2 16.57 16.57 8.54
48 3 42.92 42.92 2.77

Table 2: Results optimization algorithm for a selection of dike rings.

time. In addition, the table shows the effect the heightenings have on the dike ring’s flood probability,
i.e., the flood probabilities just before and just after the update are listed. It turns out that for these
parameter settings the safety standards for many dike rings have to be tightened in comparison with the
current safety standards in the Dutch Water Act. The Dutch government has anticipated these results
by reserving additional funds for future dike heightening. For the new safety standards in this example,
there are five out of twelve dike rings that require immediate segment heightenings at t = 0. The results
also clearly indicate that the flood probabilities just prior to a heightening decrease over time. This is
a result of the economic growth, which increases the damage costs if a flood occurs, and therefore it is
beneficial to let the flood probabilities decrease over time.

First heightening Second heightening Third heightening
Dike ring t P−(t) P+(t) t P−(t) P+(t) t P−(t) P+(t)

10 68 6.6×10−4 6.7×10−5 156 1.2×10−4 1.4×10−5 244 2.5×10−5 2.9×10−6

13 140 1.8×10−4 1.6×10−5 244 3.7×10−5 2.5×10−6 - - -
14 36 1.5×10−4 2.3×10−5 104 4.6×10−5 6.5×10−6 168 1.3×10−5 1.8×10−6

16 0 5.0×10−4 2.8×10−4 40 3.7×10−4 7.7×10−5 105 1.2×10−4 2.5×10−5

17 20 3.8×10−4 9.1×10−5 81 1.9×10−4 1.3×10−5 165 4.3×10−5 2.9×10−6

21 0 5.0×10−4 2.5×10−4 45 5.2×10−4 5.3×10−5 120 1.5×10−4 1.4×10−5

22 7 5.2×10−4 4.5×10−5 100 1.1×10−4 8.5×10−6 200 2.3×10−5 1.2×10−6

36 36 1.1×10−3 1.7×10−4 102 4.1×10−4 6.3×10−5 165 1.5×10−4 2.4×10−5

38 0 6.7×10−4 2.7×10−4 28 4.6×10−4 1.9×10−5 126 8.6×10−5 3.2×10−6

43 0 2.7×10−4 2.7×10−4 30 4.6×10−4 3.9×10−5 120 9.7×10−5 7.3×10−6

47 30 2.5×10−4 1.2×10−5 120 4.0×10−5 1.2×10−5 200 1.6×10−5 5.8×10−7

48 0 2.8×10−4 1.2×10−5 77 3.0×10−5 2.9×10−6 154 7.1×10−6 6.6×10−7

Table 3: Moments (in years measured from the start of the planning horizon) of the first three dike ring
updates and the flood probabilities just before (P−(t)) and after (P+(t)) the updates.

4.1.2 Dike Ring 17.

In Section 3.5 we discussed the iterations of our algorithm applied to dike ring 17. Here we take a
closer look at the resulting solution. Figures 2 and 3 give a graphical overview of the final solution
obtained with the iterative algorithm. Figure 2 shows the cumulative heightenings of the six segments
during the 300-year planning horizon. Figure 3 shows the resulting segment flood probabilities. It can
be seen that the two segments 1-Nieuwe Maas and 5-Oude Maas are not heightened together with the
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other segments at t = 20. Figure 3 also shows why it is not necessary to heighten these two segments:
their flood probabilities are still very low compared to the other segments. Although in this particular
example there is a moment at which not all segments are heightened simultaneously, the figure clearly
demonstrates why simultaneity very frequently leads to very good, or even optimal, results. Recall that a
dike ring’s flood probability is determined by the maximum segment flood probability. Hence, if a single
segment is not heightened simultaneously with the other segments, then it is likely that this segment’s
flood probability will become, or even remain, the dike ring’s maximum flood probability. The benefit of
heightening the other segments, in terms of decreasing the expected damage, is therefore usually smaller
than the incurred investment costs.
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Figure 2: Cumulative segment heightening dike ring 17.
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Figure 3: Segment flood probabilities dike ring 17.

4.1.3 Dike Ring 16.

Dike ring 17, discussed in Section 4.1.2, is an example of a dike ring where, in the optimal solution,
not all segments are always heightened simultaneously. Very often this is the case, however. Dike
ring 16, Alblasserwaard en Vijfheerenlanden, is a dike ring with eight segments. Figure 4 shows the flood
probabilities of the dike ring’s eight segments for the solution obtained with the iterative algorithm and
the quadratic investment cost function. It can be seen that all segments are heightened simultaneously
after the start of the planning horizon.
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4.1.4 Exponential vs. Quadratic Investment Costs.

The most important criterion for selecting an investment cost function is of course that it corresponds
as closely as possible to the actual investment costs. On the other hand, the effect of a particular
investment cost function on the optimization process has to be taken into account. This effect can
be on the solution time as well as on the quality of the returned solution. With this in mind, convex
investment cost functions are preferred for both types of effects. Hence, with regard to the two investment
cost functions introduced in Section 2.2, the exponential and quadratic, the quadratic is preferred. With
respect to the solution time, it is easy to verify whether this is indeed correct. Numerical experiments
(see Brekelmans et al. 2009, Section 4.4) for thirteen dike rings have shown that the solution time for
the exponential investment cost function is, on average, a factor of three higher than for the quadratic
investment cost function.

As it is impossible to approximate an exponential investment cost function with a quadratic function
without approximation errors, it may be expected that, with respect to both the location and the objective
value of the optimal solution, different results are obtained for the two investment cost functions. This
conjecture is confirmed by the numerical results (see Brekelmans et al. 2009, Section 4.4). Another
interesting observation is that if the optimal solutions for both investment cost functions represent
different investment plans, then the objective values for both solutions, evaluated for both investment
cost functions, usually differ by no more than one percent. This indicates that there can be several
structurally different solutions that have nearly optimal objective values. This is an interesting finding
with respect to robust optimization: there might be reasons to prefer a slightly sub-optimal solution to
the globally optimal solution of one set of parameters, for instance in the event of parameter uncertainty.

4.2 The Homogeneous vs. Nonhomogeneous Problem
If the nonhomogeneous dike height optimization problem is compared to the homogeneous case, then it
is clear that the nonhomogeneous case is more complex and, certainly for dike rings with many segments,
computationally more demanding. In this section we investigate whether this additional effort is justified,
that is, does it yield an additional benefit to model a dike ring using multiple nonhomogeneous segments
instead of a single homogeneous segment?

Consider a dike ring with more than one segment and suppose we want to obtain an investment plan
using the homogeneous case. The main problem for this approach is to convert the nonhomogeneous
segments’ characteristics into the characteristics of a single homogeneous segment. For investment costs
parameters such as c` and b` it seems obvious to aggregate them over all segments. For other parameters
such as λ`, α` and η` it is not obvious at all. A reasonable approach could be to take a (weighted)
average of these parameters over all segments. Clearly, this method cannot always result in a satisfactory
conversion of the nonhomogeneous segments into a homogeneous segment, and this is of course exactly
the reason why we are considering nonhomogeneous dike rings in the first place. However, it is interesting
to analyze the quality of the resulting investment plans. Once an investment plan for the homogeneous
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case has been obtained, then it can be transformed back into an investment plan for the original dike
ring with multiple segments, and it can be evaluated using the nonhomogeneous model.

Recall the dike rings 16 and 17 from the previous sections with eight and six dike segments, respec-
tively. For each dike ring, the segments have been reduced to a single segment according to the method
described above. Subsequently, the homogeneous cases have been solved and transformed back into the
original nonhomogeneous problems. Table 4 shows the results of this method as well as the previous
results obtained with the nonhomogeneous model. Clearly, the solutions obtained with the homogeneous
model are inferior to the solutions from the nonhomogeneous case.

Dike ring
Obj. homogeneous
solution (Me)

Obj. nonhomogeneous
solution (Me)

16 3410 1029
17 396 377

Table 4: Comparison of results of homogeneous and nonhomogeneous cases. Table gives the objective
values of the solutions obtained with (1) the reduction to the homogeneous case and (2) the regular
nonhomogeneous case. Both solutions are evaluated using the nonhomogeneous model’s true evaluation
of the objective.

The results for the homogeneous case are probably very sensitive to the method used to reduce the
segment characteristics. In Eijgenraam (2005) a qualitative reasoning is given why it is likely that the
timing of the heightenings for the different segments is the same. Further, it would be the segment with
the biggest value for β` and—since γ is the same—the biggest value for α`η` that is critical for the length
of the time interval between two subsequent heightenings. (Both suppositions are now confirmed e.g., in
Figures 3 and 4.) Therefore the parameters of this critical segment were used in the calculation of the
damage costs. The investment costs are calculated as a weighted average. The amount of the heightening
differs between the segments, but has a fixed relation to the calculated time interval, say τ . Using the
exponential cost function the heightening per segment is calculated as

u`k = β` · τ
α` − ζ + λ`

.

So, the differences between a homogeneous and a nonhomogeneous calculation can be smaller for other
methods than used for Table 4, but there is no obvious method that performs well under all circum-
stances. Therefore, these results demonstrate that solving the dike height optimization problem using
the homogeneous model is not sensible if the dike ring is in fact nonhomogeneous.

4.3 Robust Optimization Results
In this section we discuss the solutions obtained by the two robust optimization approaches proposed
in Section 2.3, which is desirable if model parameters are uncertain. We consider a particular example
with five scenarios, i.e., instances of model parameters, for dike ring 29, Walcheren. The scenarios have
been created by selecting a default scenario, which would have been used if the standard approach had
been applied, and subsequently we consider a low and high variation of the climate and economic model
parameters. Table 5 gives an overview of how three different levels of a model parameter (low, average,
high) are combined in the five scenarios. The climate scenarios are based on an analysis by the KNMI
(Royal Netherlands Meteorological Institute). The exact values for these parameters are taken from the
database provided by Deltares.

Let us first consider each of the five scenarios individually, i.e., the iterative algorithm from Section 3.4
is applied to each of the five instances of model parameters separately. This yields five different investment
plans, say sol-1 to sol-5, that are optimal for the five scenarios, respectively. The corresponding objective
values are shown in the column labeled Optimal objective in Table 6. It can be seen that scenario 5 is
the worst-case scenario since it has the highest optimal objective of all scenarios.

Now consider the situation where the parameter values are unknown and can take on the values
defined in the five scenarios, and that only a single investment plan can be selected. Suppose that the
default scenario’s optimal investment plan, that is sol-3, is selected. The optimal objective value for
scenario 3 is 79.50, but what happens if scenario 5 occurs? The resulting objective value has to be worse
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No. Climate η α P0 Economic γ

1 low low high low low low
2 low low high low high high
3 avg. avg. avg. avg. avg. avg.
4 high high low high low low
5 high high low high high high

Table 5: Scenario definitions based upon climate and economic model parameters.

Scenario Regret for solution

No. Climate Econ.
Optimal
objective sol-1 sol-2 sol-3 sol-4 sol-5

avg-
regret

max-
regret

1 low low 60.93 0.00 12.44 5.89 7.70 26.15 13.26 12.13
2 low high 90.48 69.70 0.00 3.78 8.97 6.89 2.22 3.14
3 avg. avg. 79.50 15.00 2.43 0.00 2.49 12.97 4.01 4.00
4 high low 79.77 25.36 3.36 1.94 0.00 11.65 2.77 2.84
5 high high 107.74 1690.81 27.30 101.51 64.22 0.00 10.11 12.13

avg regret N/A 360.17 9.106 22.624 16.676 11.532 6.474 6.848
max regret N/A 1690.81 27.30 101.51 64.22 26.15 13.26 12.13

Table 6: Results robust optimization dike ring 29.

than the optimal objective value for scenario 5, which is 107.74, and in this case it is equal to 209.24. This
means that the regret of sol-3 for scenario 5 equals 209.24−107.74 = 101.51, or regret(Usol−3, 5) = 101.51,
where Usol−3 denotes the investment plan sol-3. The regret of the solutions sol-1 to sol-5 for all five
scenarios are listed in Table 6.

Since it is not known in advance which scenario will occur, it is interesting to look at the aggregate
measures shown in the last two rows of Table 6: the average regret and the maximal regret. These
measures relate to the robust optimization approaches introduced in Section 2.3. The last two columns
in Table 6 show the regrets and aggregate measures for the two robust approaches. Note that these
results were obtained by applying the iterative algorithm to a modified version of the generic MINLP
(17), similar to the robust optimization models in Section 2.3. It thus appears that investment plans
exist that, over the set of all possible scenarios, perform much better than the single-scenario solutions
sol-1 to sol-5. Hence, if there is uncertainty about the model parameters, then it is important not to
focus on a single scenario but to consider robust solutions instead.

5 Concluding Remarks
In this paper we considered the dike height optimization problem: what is the optimal dike investment
strategy to protect against floods? This is a very important problem in the Netherlands and the gov-
ernment needs to deal with this problem by setting dike ring safety standards. The homogeneous case
of this problem is addressed in Eijgenraam et al. (2010). In this paper we consider the extension to the
nonhomogeneous case, which is very relevant in practice. This entails that dike rings consist of multiple
dike segments, which can be heightened independently of each other. We modeled the nonhomogeneous
case as a MINLP model. We also developed an optimization algorithm that reduces the solution time of
the problem for large instances. The model and algorithm have been implemented in a software package
that is used by the government to determine revised safety standards to be incorporated in the Dutch
Water Act.

For the numerical example carried out in Section 4.1, it appears that the safety standards for many
dike rings have to be tightened. According to these results, some of the dike rings require immediate
heightening. The Dutch government has already reserved additional funds for the required future dike
heightenings. Moreover, the numerical experiments show that the nonhomogeneous model yields results
that are superior to the results obtained by considering a dike ring to be homogeneous.
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It is important to obtain solutions that are robust against uncertainties in model parameters. The
model has been further extended to incorporate a robust optimization approach based on the regret
criterion. We show that the average and maximum regret can be reduced significantly by applying this
robust optimization approach.

The nonhomogeneous dike height optimization problem has been developed for the situation in the
Netherlands. It would be interesting to see if the model can be applied to other deltas in the world in
which dike rings are nonhomogeneous.

A Convexity Analysis
In this appendix we consider the convexity properties of the exponential investment cost function, the
quadratic investment cost function and the expected damage as they have been defined in the MINLP
model in Section 2. Additionally, we consider alternative formulations of the MINLP model (9) in
Section A.4.

A.1 Exponential Investment Costs
In this section the convexity properties of the exponential investment cost function are considered. Recall
the the exponential investment costs of for a positive heightening of segment ` at time tk:

Ie`k(u) = (c` + b`uk) exp
(
−λ`

∑k
i=0 ui

)
, u ∈ RK+1

+ , ` = 1, . . . , L, k = 0, . . . ,K.

Let c`, b`, λ` ≥ 0. It is easy to verify that if λ` = 0 or b` = 0 or k = 0, then Ie`k(u) is convex on RK+1
+ ,

otherwise Ie`k(u) is not convex.

A.2 Quadratic Investment Costs
In this section the convexity properties of the quadratic investment cost function are considered. Recall
the the quadratic investment costs of for a positive heightening of segment ` at time tk:

Iq`k(u) = φ`0 + φ`1uk + φ`2
(∑k

i=0 ui
)2
, u ∈ RK+1

+ , ` = 1, . . . , L, k = 0, . . . ,K.

Let φ`2 ≥ 0. It is easy to verify that Iq`k(u) is convex on RK+1
+ .

A.3 Expected Damage
Let t = (t0, . . . , tK) denote a discretization scheme. Let E`k(u, t) be the approximation of

∫ tk+1
tk

S`t exp(−δt)dt,
similarly to in Section 2.1, i.e.

E`k(u, t) = S`0
β1`

exp
(
ζ(H`∗tk −H`00)− α`h`k

)[
exp(β1`tk+1)− exp(β1`tk)

]
,

for ` = 1, . . . , L, k = 0, . . . ,K with u ∈ RK+1
+ . Further, let Ek(U, t) be the approximation of the

expected damage in [tk, tk+1) given by

Ek(U, t) = max
`∈L
E`k(u(`), t),

for k = 0, . . . ,K with U = [u(1), . . . ,u(L)]T ∈ RL×(K+1)
+ . Finally, let E(U, t) be the approximation of

the expected damage in [0, T ):

E(U, t) =
K∑
k=0
Ek(U, t).

It is easy to verify that E`k(u, t), Ek(U, t) and E(U, t) are all convex in u and U, respectively.
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A.4 Alternative MINLP Formulations
The MINLP model (9) is one way of modeling the nonhomogeneous dike height optimization problem.
However, there are alternatives as well. From a modeling point of view, these alternatives are not
interesting, though from a numerical point of view, alternative representations of the model could result
in a more efficient solution process.

An obvious alternative formulation can be obtained by removing the variables h`k and H`k and
corresponding equality constraints (9d) and (9e) from the model and making appropriate substitutions
elsewhere in the model.

A more interesting alternative formulation of MINLP model (9) is obtained by introducing auxiliary
variables I`k, which represent the investment costs for segment ` at time tk, and substitute these in the
place of the investment costs in the objective function (9a). Additionally, the following constraints have
to be added to the MINLP:

I`k ≥ Ie`k(u(`))− (1− y`k)Imax
` ` = 1, . . . , L, k = 0, . . . ,K,

I`k ≥ 0 ` = 1, . . . , L, k = 0, . . . ,K.

If the constant Imax
` is larger than the highest reasonable investment costs for segment `, then these two

constraints ensure that I`k = 0 if y`k = 0, and I`k = Ie`k(u(`)) if y`k = 1. Of course, this formulation
can also be applied to the quadratic investment costs. The advantage of this formulation is that, if the
quadratic investment cost function Iq`k(u(`)) is used, this incorporates the investment costs as a convex
constraint in the model, which renders the entire MINLP model as a convex optimization problem. Note
that this is not true if the exponential investment cost function is used, or if the original formulation
in the objective value (9a) is used. Convexity of an optimization problem is of great importance for
optimization purposes, since it guarantees that a local optimum is a globally optimal solution. The
question remains of course whether it is numerically efficient to use this alternative formulation. This
question is addressed in Appendix B.1.

B Implementation Details
This appendix discusses some implementation details of the optimization algorithm for the nonhomo-
geneous dike height optimization problem. In Appendix B.1 we consider the numerical performance of
different variations of the MINLP model. In Appendix B.2 we discuss in detail how the discretization
scheme is initialized and refined in the iterative optimization algorithm presented in Section 3.4. In
Appendix B.3 we discuss how to partition the set of segments for the use of nearly redundant constraints
that enforce heightenings of groups of segments at the same time. In Appendix B.4 we demonstrate the
performance of the algorithm compared to the original MINLP model (9).

B.1 Comparison of MINLP Formulations
In this section the numerical performances of two different MINLP formulations of the dike height opti-
mization problem are compared. The first MINLP formulation is (9) applied with quadratic investment
costs, i.e., with objective function (10) instead of (9a). The second MINLP formulation is the convex
alternative formulation of the first formulation as explained in Appendix A.4.

A numerical test is carried out for three dike rings by solving both MINLP formulations for each dike
ring. No time limit or relative stop criterion is used, so the problems are solved until, with certainty,
AOA cannot find an improvement of the best solution found. For convex problems this implies that a
global optimum has been found.

The solutions for all three dike rings, in particular the objective values and corresponding investment
plans, obtained by both MINLP formulations were found to be completely identical. Hence, the solutions
obtained by the first MINLP are identical to the solutions obtained by the second MINLP, which we
know to be the global optima of the underlying problems. It cannot be proven that this will always be
the case, and moreover, in practice another stop criterion will be used. However, the solution times of
the first MINLP are much better than the solution times of the second MINLP. The solution times of the
second MINLP were 2 to 80 times longer than of the first MINLP. Based on this result the first MINLP
formulation is preferred, i.e., the investment costs are directly included into the objective function.
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B.2 Implementation Discretization Scheme
In Appendix B.2.1 a method is proposed that can be used to select an initial discretization scheme.
Subsequently, Appendix B.2.2 considers how an existing discretization scheme can be refined, for the use
in an iterative solution algorithm.

B.2.1 Initialization of Discretization Scheme.

The decision for a discretization scheme can be divided into three different steps that, to some extent,
can be considered independently of each other:

(i) selecting the length of the planning horizon T ,

(ii) selecting the number of time intervals K, and

(iii) selecting the interval sizes tk − tk−1 for k = 1, 2, . . . ,K + 1.

The first logical step in determining the discretization scheme is to select the length of the planning
horizon T . If we consider K fixed, then increasing T implies that the average interval size increases,
and consequently approximation accuracy of the expected damage, given by (4), diminishes. Another
reason for choosing a value of T that is not too large is that, due to discounting, the effect of a decision
becomes smaller as the time span of the decision becomes larger. On the other hand, if we choose T
small, then the approximation of expected damage after T , given by (5), becomes inaccurate or simply
too large. Numerical experiments have shown that, for the application to dike rings in the Netherlands,
T = 300 yields an approximation of the expected damage after T that is satisfactory in the sense that
it does not affect the first part of the investment plan. This is important, because in the end, this
first part is used to determine the new safety standards. Using a smaller planning horizon can result in
significant approximation errors, which can result in a different investment plan. On the other hand, a
larger planning horizon does not offer many benefits.

The second step is to choose the number of decision moments. The value of K is an important
factor regarding the number of decision variables. The investment plan is characterized by L(K + 1)
continuous decision variables, but additionally, we also need L(K + 1) binary decision variables and
several auxiliary decision variables in the MINLP. Especially the binary variables have a strong impact
on the solution time of a MINLP solver. The MINLP’s solution time explodes if the number of discrete
decision variables increases, making it important to choose the value of K cautiously, especially for
problems with multiple segments. The fact that the combination of the number of dike segments L and
the number of decision moments K+ 1 determines the number of decision variables of the MINLP forces
us, for reasons of computation time, to use different values of K for dike rings that have a different
number of dike segments. If, as a rule of thumb, we take the number of integer decision variables as a
starting point and try to fix this at B, then the value of K can be determined by

K =
⌈
B

L

⌉
.

The third and final step in selecting a discretization scheme is choosing the interval sizes tk − tk−1.
The most obvious choice is to choose equidistant intervals, i.e.,

tk = kT

K + 1 , k = 0, 1, . . . ,K + 1.

The MINLP formulation does not require the possible dike heightening moments tk to be equidistant.
Since costs are discounted, the impact of decisions at the start of the planning horizon is higher than
decisions at the end of the planning horizon. This property can be exploited by choosing smaller intervals
at the start of the planning horizon and larger intervals at the end, thereby saving decision variables
towards the end of the planning horizon. A possible approach that uses this idea is to divide the planning
horizon into two parts: [0, T1) and [T1, T ), and subsequently to assign a fraction ϕ of the K + 1 integer
decision variables per dike segment to the first part, and a fraction 1− ϕ to the second part.

There are various alternative methods to define a good discretization scheme, especially regarding the
last two steps of the process described here. For example, the values of tk could be restricted to integer
values for reasons of convenience. Considering the time span of the dike height optimization problem,
this is not a serious limitation.
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B.2.2 Refining an Existing Discretization Scheme.

The main reason for not choosing small interval sizes is that it requires a large value ofK and consequently
many decision variables and a large solution time. The consequence is that approximation (4) can be less
accurate and that the flexibility in selecting the timing of segment heightenings is limited. One option
to deal with this issue is to generalize the concept of a discretization scheme in relation to MINLP (9)
and to use multiple discretization schemes for the same dike height optimization problem.

In MINLP (9), K determines the number of decision variables u`k and y`k, but on the other hand
K also determines the number of auxiliary variables I`k and Ek. This relationship does not necessarily
have to be like this. Recall that especially the number of binary variables y`k is an important factor for
the MINLP’s solution time. If K is kept fixed, then the number of binary variables can be reduced by
enforcing y`k = 0 for an appropriately chosen subset F of {0, 1, . . . ,K}, which can be realized by simply
substituting y`k = 0 for k ∈ F in MINLP (9). Another way of looking at this is that the y`k, k ∈ F , are
demoted from decision variables to parameters. Notice that, due to constraint (9f), also the substitution
u`k = 0, k ∈ F can be carried out, thereby reducing the number of decision variables even further. The
advantage of this approach is that the approximation of the expected damage does not suffer from the
reduction in the number of decision variables.

This generalization of MINLP (9) can be exploited in an iterative approach. Suppose a solution has
been obtained by using an equidistant discretization scheme with ten year intervals. Assume that in the
resulting investment plan, for a certain segment the first heightening takes place at t = 50 and the second
at t = 150. It is, intuitively, very unlikely that exactly the same timing of segment heightenings would
have been found for the discretization scheme with one year intervals, since this discretization scheme
offers much more flexibility in investment plans. However, the obtained solution gives a good idea of
the timing of the dike heightenings that might have been obtained by using this “ideal” discretization
scheme. It is, for instance, very unlikely that a dike heightening at t = 95 would have been obtained.
More specifically, we expect to obtain dike heightenings in the neighborhood of the dike heightenings
found in the selected discretization scheme. This idea can be used to refine the initial discretization
scheme. Refining an existing discretization scheme is done by (1) adding decision moments to the
discretization scheme, and (2) fixing the decision variables for the decision moments in a subset of the
resulting discretization scheme.

First, we discuss adding decision moments to a discretization scheme. Suppose that a dike heightening
takes place at decision moment tk. Now consider the interval (tk−1, tk+1). We want to add decision
moments in this interval to be able to explore other solutions in the neighborhood of the first solution.
Since we are not necessarily interested in adding decision moments close to tk−1 or tk+1, two intervals
are defined using a fraction ξ as shown in Figure 5. Note that the parameter ξ is not necessarily ≤ 1.
If ξ > 1, then the new intervals stretch beyond the existing decision moments tk−1 and tk+1. Moreover,
contrary to the example, the interval sizes tk − tk−1 and tk+1 − tk are not necessarily equal depending
on the initial discretization scheme.

tk−1 tk tk+1

ξ(tk − tk−1) ξ(tk+1 − tk)

Figure 5: Refinement of decision moments.

Now it has to be decided how many decision moments will be added to both intervals. This is
determined by the number Q, and the additional decision moments will be added using equal interval
sizes.

For example, if ξ = 2/3 and Q = 2, then this yields the additional decision moments marked by the
dots in Figure 5. Another sensible parameter choice is ξ = 1/2 and Q = 1, which yields exactly one
additional decision moment half-way in between the existing decision moments.

Finally, once a new discretization scheme has been defined, then it makes sense to use the general-
ization of MINLP (9) and fix the decision variables outside the intervals of interest equal to zero. This
has a positive effect on the solution time since the number of decision variables decreases.
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B.3 Selecting Segment Partitions
In Section 3.3.2 we propose to use nearly-redundant constraints that forces heightenings of a certain
group of segments to occur simultaneously. Here we discuss how these groups can be defined.

Even though it is easy to formulate constraint (16), it is less obvious how to choose the subset G.
Moreover, if one group of segments with similar characteristics is selected, then the remaining segments
often have something in common as well. We would therefore like to impose constraint (16) on this
group as well, especially if this group is large. It is of course possible to partition L into more than two
subsets, but unless there is a compelling reason to do so, based upon specific expert dike ring knowledge,
it is almost impossible to provide general guidelines for selecting these partitions.

If we restrict ourselves to partitioning L into two subsets, G1 and G2, for which constraint (16) will
be imposed, then there still are

bL/2c∑
n=0

(
L

n

)
ways of doing so. For dike rings with more than four dike segments, this number is simply too large
to try all possibilities. The number of partitions might be reduced, however, if we are able to select
promising partitions from the total set.

One particular useful partition is G1 = L and G2 = ∅, which represents the special case (15). Another
set of interesting partitions are the partitions that allow an investigation of whether a single segment `
should be heightened simultaneously with the others or not. These are the partitions

G1 = L \ {`} and G2 = {`}, ` = 1, . . . , L. (18)

Note that, in this case, G2 does not yield any additional constraint according to (16), since G2 has
cardinality 1.

If L is large, then there are many partitions left with more than one segment in both subsets. A
good selection method for these partitions may be derived by important segment properties that can
be ordered. For example, consider the flood probability. One of the most important reasons for dike
segments to have non-simultaneous dike heightenings is the varying development of flood probability
over time. The increase in flood probability for a certain dike segment can be much slower than the
increase for other segments, as a result of which the dike segment has to be heightened less often than
the other segments. The development of a segment’s flood probability is partly dependent on α`η`, and
hence it might be worthwhile to select the partition of L on this basis. Let σ : L → L be a permutation
of L such that

ασ(`)ησ(`) ≤ ασ(`+1)ησ(`+1), ` = 1, 2, . . . , L− 1. (19)

The subsets of L for which (16) will be included in the MINLP based upon this idea are then given by

G1
` = {σ(1), . . . , σ(`)} and G2

` = {σ(`+ 1), . . . , σ(L)}, ` = 2, . . . , L− 2. (20)

Another interesting permutation of L can be derived by considering the investment costs. For exam-
ple, if two dike segments have equal properties except that one has much higher fixed investment costs,
then it might be optimal for this segment to be heightened less frequently but more comprehensively
than the other segment. A typical example is the situation where a flood gate in a dike ring is modeled as
a separate segment. Heightening a flood gate usually involves extremely high fixed costs in comparison
with the variable costs. If only a single flood gate, or another extreme cost-characteristic segment, is
present, then this situation is already tackled by the individual partition of single segments such as in
(18). However, if more than one of these segment types are present, then a good approach is to partition
the segments based upon the quotient of the investment costs and its derivative. Let

F`(u) = I`1(u)
∂
∂u1

I(u)

∣∣∣∣
u=(u,0,...,0)

be this quotient, and sort the segments according to F`(u) for, say u = 100cm. Partitions of L, based
upon this ordering, can now be derived similar to (20).
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B.4 Optimality Iterative Algorithm
Recall that, ideally, we would like to solve the MINLP (9). Unfortunately, this problem’s solution
time can explode very suddenly as K increases for dike rings with many segments, making the use of
MINLP (9) not very suitable in practice. For selected problems it is of course possible to compare the
performance of the iterative algorithm defined in Section 3.4 to MINLP (9). Table 7 shows the results
for dike ring 16 obtained with three different methods. The first method is the iterative algorithm,
which has been applied with two initial discretization schemes (stage 1): one with K = 14 and one with
K = 25 as indicated by the second column of Table 7. In the last step of the iterative algorithm, a
refined discretization scheme (stage 2) is used and the corresponding value of K and the cardinality of
the associated set F are shown in the third and fourth column respectively. The fifth column shows the
solution time and the last two columns give the MINLP objective as well as the true objective. As might
be expected, the solution time increases if a finer discretization scheme is used. The objective values
for the initial discretization schemes with K = 14 and K = 25 are a good example why investment
plans should be compared using the true evaluation. The true objective for K = 25 is lower than
the objective for K = 14, albeit less than 0.1%, and since the true objective is based on a fixed and
unique discretization scheme we can truly say that this investment plan is the best of the two. The two
MINLP objectives give an opposite perception. However, since these two objectives result from different
discretization schemes, they cannot be adequately compared.

Method
K

(init)
K

(refine)
#F

(refine)

Solution
time
(min)

MINLP
objective
(Me)

True
objective
(Me)

Iterative algorithm 14 25 8 2.9 1027.7735 1029.3511
Iterative algorithm 25 34 20 21.6 1027.8737 1028.5856
Single & refine 14 25 8 434.1 1027.7735 1029.3511
Single & refine (forced) 14 23 9 0.2 1027.7455 1029.3472
Single & refine (forced) 25 34 20 1.5 1027.8341 1028.5409

Table 7: Results for dike ring 16 obtained with different methods.

The second method shown in Table 7, indicated by “single & refine”, is the use of MINLP (9) with an
initial and a refined discretization scheme similar to the discretization schemes in our iterative algorithm.
In particular, constraints (17d), (17e) and (17f) are not used in this method. For the initial discretization
scheme with K = 14, this gives the same final investment plan as the iterative algorithm but with a
solution time of 434.1 min. instead of 2.9 min. This method’s solution time clearly indicates that the
nearly-redundant constraints used in the iterative algorithm have a significant impact on the model’s
solution time.

As a third method we have also included the extension of the previous method that forces segments to
be heightened simultaneously, i.e. with constraint (15) added to the optimization model. This basically
boils down to using only the first and last iteration of the iterative algorithm and ignoring all the
intermediate iterations. By now it will have become clear that for dike ring 16, constraint (15) really
is a redundant constraint and can safely be included without affecting the optimal solution. In general,
this is not known beforehand and therefore is not applicable in practice. However, if this information is
available, then it may deliver quite substantial savings in solution time.

It cannot be guaranteed that, in general, the iterative algorithm yields the global optimal solution.
However, the results from Table 7 indicate that it is more beneficial to apply the iterative algorithm
with a finer discretization scheme than to ensure that a global solution has been found for a rougher
discretization scheme.
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