
Flood Prevention by Optimal Dike Heightening

Carel Eijgenraam
CPB Netherlands Bureau for Economic Policy Analysis

Ruud Brekelmans
Department of Econometrics & Operations Research,

CentER, Tilburg University, the Netherlands

Dick den Hertog
Department of Econometrics & Operations Research,

CentER, Tilburg University, the Netherlands

Kees Roos
Delft University of Technology, the Netherlands

Working paper, 2012

Abstract

Dike height optimization is of major importance to the Netherlands since a large part of the
country is below sea level and high water levels in rivers may cause floods. In this paper we pro-
pose a cost-benefit analysis to determine optimal dike heights. We improve the model proposed by
Van Dantzig (1956) after a devastating flood in the Netherlands in 1953. For one important class of
the dike investment cost function we show that there is periodic solution that satisfies the first order
conditions, and this solution can be easily computed. For the general case we propose a Dynamic
Programming approach. Numerical results suggest that the current dike height standards in the
Netherlands are too low. The Dutch government has already reserved extra funds to realize these
higher standards, and it is expected that the standards in the Dutch Water Act will be adapted in
the near future.
Keywords: flood prevention, cost-benefit analysis, Dynamic Programming

1 Introduction

Protection against flooding is an important issue in the Netherlands, since 55% of this country is suscep-
tible to flood risk. Each year the government spends 1 billion euros on protection by dikes, structures
and dunes. In total there are 3500 km of dikes in the Netherlands. In 1953 a severe flooding disaster oc-
curred in the south-western parts of the Netherlands, killing 2000 people and causing immense economic
damage. In 1995 there was again a critical situation, this time along the major rivers of the Rhine and
Meuse, forcing 200,000 people to be evacuated, but fortunately there was no serious flooding.

Protection against flooding is an important issue worldwide. There are many deltas that must fight
against the water. In 2005, serious flooding in and around New Orleans saw some 1500 people killed,
with extremely serious damage. In other countries, like Bangladesh, serious flooding is an almost yearly
phenomenon. In 2010 flooding has been a serious issue in several areas, of which Pakistan was the most
serious. Syvitski et al. (2009) gives an analysis of 33 important deltas, and it was found that 85% of
these deltas had experienced severe flooding in the past decade. Close to half a billion people live on
or near deltas, often in megacities. They estimate that the delta surface that is vulnerable to flooding
could increase by 50% under the currently projected values for sea level rise in the 21st century, due to
global climate change. This is often aggravated by the decline of the ground level by the draining of
marshlands and pumping fresh water out of deep wells or the extraction of oil and gas. The renowned
Stern Review (Stern (2006)) offers an analysis of the economic consequences of the sea level rise, of which
flood protection and damage are certainly aspects.

In this paper we carry out an economic cost-benefit analysis for the efficient protection against flooding
in the Netherlands. The costs mainly consist of investment costs to heighten dikes, and the benefit is
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more safety and thus less (expected) damage costs due to flooding. We show that for certain choices
of the investment cost function, there is a periodic solution that satisfies the first order conditions, and
this solution can be stated explicitly. We propose a Dynamic Programming approach to find the optimal
solution if other investment cost functions are used.

After the flood disaster in the Netherlands in 1953, the Delta Committee asked D. van Dantzig to
solve the economic decision problem concerning the optimal height of dikes. This project is considered as
the start of Operations Research in the Netherlands. His analysis and formula, published in Econometrica
(Van Dantzig (1956)), were still in use in the Netherlands until the first results of the model presented
in this paper appeared. Van Dantzig (1956) develops a cost-benefit analysis in which the social costs of
investing in water defences are balanced against the social benefit of avoiding damage by flooding. Since
non-material issues are involved in social costs and in social benefits alike, the choice of safety standards
is ultimately a political decision. We wish to stress that the cost-benefit analysis in this paper is indeed
just one of the instruments in the extensive project ‘Water safety 21st century’ (Kind (2011)), and other
criteria will certainly be taken into account for the final decision on the legal flooding standards. The
Dutch Water Act defines a standard for the maximum flood probability for all dikes in the Netherlands.
These flood probabilities, which are partly based on Van Dantzig’s analysis, range from 1/250 per year
for small areas in the Meuse valley, via 1/1250 per year for dike rings along the upper part of the Rhine,
to 1/10,000 per year for the most important dike rings in the provinces of North and South Holland
along the coast. See also Figure 1. These safety standards are probably the highest in the world (see for
an overview Galloway et al. (2006), Table 7-1). They are, for instance, much higher than the well-known
regular standard in the USA of 1/100 and even much higher than the recently recommended standard
of 1/500 for densely populated or vulnerable areas; see Galloway et al. (2006).

Recently, a second Delta Committee argued that the standards stated in the above-mentioned Act
are too low in comparison to the present risks, as the standards have not been updated since 1959
(see Deltacommittee, (2008)). Keeping the flood probabilities constant over time is indeed in line with
the approach of Van Dantzig, but this seems odd in the light of the growth of both population and
wealth. Therefore, the research problem that the government presented to the authors was, first, to
develop new flood standards based on the right cost-benefit model. Secondly, the authors were asked to
develop solution techniques to solve the resulting optimization model, preferably with a global optimality
guarantee. Based on the optimal solutions for the dike rings in the Netherlands, the final goal for the
government is to include the new safety standards in an updated version of the Dutch Water Act.

In this paper we show that Van Dantzig’s analysis is indeed incorrect with respect to economic growth.
According to his approach, the height of a dike after every heightening should be such that the resulting
flood probabilities are the same. This strategy is not optimal when considering economic growth, since
economic growth implies increasing potential damage by flooding, thus requiring higher dikes to achieve
lower flood probabilities. This paper demonstrates how to correctly include economic growth in the
cost-benefit analysis. This is our first improvement of Van Dantzig’s results. The second improvement
concerns the timing of the heightenings. Van Dantzig (1956) only answers the question how much to
invest in heightening a dike the first time. He did not really address the ‘when’ question, for the obvious
reason that at that time heightening the dikes was immediately called for. For later heightenings he
assumed a priori that they should be heightened periodically, and stated that a reasonable choice for
the period T between two heightenings is T = 1/η, where η is the structural increase of the water level
(cm/year). This choice is arbitrary and not necessarily optimal, since it is not a part of the model
solution itself. The formulation of the timing problem has been improved by Vrijling and Van Beurden
(1990). However, their model does not incorporate economic growth and their solution methods are
predominantly numerical. We will see that the solution of our model automatically gives analytical
formulas for the optimal heightening intervals and heightening amounts for an even more complicated
case in which the investment costs are rising with the existing height of the dike. The formulation chosen
for the investment cost function is in accordance with engineering practice, see e.g., Voortman (2002).

We show that for certain choices of the investment cost function there is an explicit periodic solution
that satisfies the first order conditions. To cope with other choices of the investment cost function we
develop a Dynamic Programming approach. We have calculated the optimal solution for 21 Dutch dike
rings, and conclude that several dike rings should indeed be heightened immediately. Moreover, our
results suggest that for several dike rings the current safety standards are too low.

In this paper we assume that a dike ring is homogeneous, i.e. that all characteristics for flood
probability, investment costs, etc., are the same for all dikes in the dike ring that have to sustain the
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Figure 1: Dike ring areas and safety standards in the Netherlands.

same kind of threat. However, for many dike rings in the Netherlands this is not the case, since a
dike ring, especially along rivers, may have different segments, each with different characteristics. The
inhomogeneous case is treated in Brekelmans et al. (2012).

This paper is partly based on the reports Eijgenraam (2006), Eijgenraam (2005), and Den Hertog and Roos
(2009), and partly on new results.

2 Cost-benefit model

In the first subsection we describe our mathematical model and in the second subsection we comment
on the validity of the underlying model assumptions and parameter values.

2.1 Mathematical model

There are 53 so-called dike ring areas in the Netherlands with a higher safety standard than 1/1000 per
year; see Figure 1. Each dike ring protects a certain area against flooding. The model that we present
is for each separate dike ring or a part of a dike ring with the same kind of threat. In the cost-benefit
analysis we attempt to minimize the total social costs, consisting of the investment costs for heightening
the dikes and the remaining expected loss by flooding. We model these two cost components.

Expected loss by flooding. The expected annual loss by flooding (St) is defined as the product
of the potential loss by flooding (Vt) times the probability of a flood per year (Pt). It is assumed that
flooding does not occur more than once in the same year. Under normal conditions the dike ring will
be properly protected, so the relevant probability distribution is an extreme value distribution for water
levels. In practice an exponential distribution fits the data reasonably well (Van Noortwijk et al. (2002)).
This distribution is supposed to shift to the right with a constant speed of η centimeters per year, as a
result of rising sea levels and higher peak levels of river discharges. The resulting flood probability Pt is
the probability that the water level will exceed the level of the dike, resulting in a flooding of the dike
ring area. The flood probability Pt is therefore defined in the same way as by Van Dantzig (1956):

Pt = P −
0 eαηte−α(Ht−H

−

0 ), (1)
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where

Ht = dike height at time t (cm),

H−
0 = dike height just before time t = 0 (cm),

Pt = flood probability at time t (1/year),

P −
0 = flood probability just before time t = 0 (cm),

α = parameter exponential distribution for extreme water levels (1/cm),

η = structural increase of the water level (cm/year).

The loss by flooding is defined as:

Vt = V −
0 eγteζ(Ht−H−

0 ), (2)

where

Vt = loss by flooding at time t (million euros),

V −
0 = loss by flooding just before time t = 0 (million euros),

γ = economic growth rate in dike ring (per year),

ζ = increase of loss per cm dike heightening (1/cm).

The first factor on the right-hand side of (2) also includes a monetary valuation for non-material
losses. The second factor on the right-hand side of (2) reflects the economic growth up to year t. We
assume a constant growth rate γ. The third factor on the right-hand side of (2) is an addition to Van
Dantzig’s model and is only relevant along rivers. Along rivers a dike has a slope equal to the slope of
the river. Compared to sea level, the tops of the dikes upstream are higher than the tops of the dikes
downstream. When flooding occurs, the resulting water level in the dike ring is assumed to always reach
as high as the lowest point of the dike above sea level. At this point the water runs over the dike back
into the river or into another outlet. Of course, the height of the water level within the dike ring is one
of the determinants of the amount of damage. If the dike is heightened, the resulting damage within the
dike ring will increase. This is expressed in a simple exponential manner.

Multiplying (1) and (2) leads to the formula for the expected loss at time t

St = PtVt = P −
0 eαηte−α(Ht−H−

0 ) · V −
0 eγteζ(Ht−H−

0 ), (3)

or, equivalently,
St = S−

0 eβte−θht , (4)

where
S−

0 = P −
0 V −

0 , β = αη + γ, θ = α − ζ > 0, ht = Ht − H−
0 . (5)

The expected loss St increases by β percent per year, as a result of economic growth and of rising water
levels due to, among other reasons, climate change. To cope with these systematic changes, defensive
actions are required in the future. Here we summarize these defensive actions by ‘heightening’ of dikes.
The corresponding costs are called investment costs.

Throughout this paper only strictly positive values for both parameters β and θ are considered,
because other values make no sense in (4). If β < 0 a possible safety problem in the initial situation
would solve itself, because the expected damage would decrease over time. If β = 0 at most one
action solves forever a possible safety problem in the initial situation. Only the case β > 0 leads to a
complicated decision problem with more than one action that has an influence on future actions. In
case θ ≤ 0, heightening of a dike will be senseless anyway, because then it will not diminish the loss.
The restriction to only positive values remains valid if other components would be added to these two
composite parameters.

Investment costs. The investment costs for a heightening depend on the amount of the current
heightening and the current dike height (i.e., the previous dike heightenings). Van Dantzig (1956) uses
a linear investment cost function that does not depend on the height of the current dike. We make the
investment costs dependent on the height of the existing dike, since this appears to be more in line with
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engineering experience. (See also Van Dantzig’s remark on this issue on page 280 of Van Dantzig (1956).)
Based on engineering practice and detailed cost studies (see e.g. Voortman (2003)) we will consider two
specific investment cost functions. The first is an exponential investment cost function

I(h−, u) = { 0 if u = 0(c + bu) eλ(h−+u) if u > 0, (6)

where c, b and λ are positive constants, and h− is the height of the dike just before a heightening by u.
The second is a quadratic investment cost function

I(h−, u) = { 0 if u = 0a0

(

h− + u
)2

+ b0u + c0 if u > 0, (7)

for suitably chosen constants a0, b0 and c0. Note that both investment cost functions are not continuous
at u = 0, due to the fixed costs. This is the reason that the dike heightening process is discontinuous
and non-convex.

Overall model. Social welfare is maximized by minimizing the present value of the total expected
costs of flooding and investment over the whole future. The dike height is a nondecreasing step function
that is increased at moments t1 < t2 < . . . with a certain amount in order to increase the safety level.
We denote the increment of the height at time tk as uk. We also introduce the notation t0 = 0. Note
that it may happen that t1 = t0 = 0, in which case there is an immediate increase. Using this notation
we have ht = Ht − H−

0 =
∑k

i=1 ui for tk ≤ t < tk+1. Note that htk
=
∑k

i=1 ui. We use this notation to
rewrite the expected total discounted damage costs as

∫ ∞

0

Ste
−δ1tdt =

∞
∑

i=0

∫ ti+1

ti

S−
0 eβte−θhti e−δ1tdt =

S−
0

β − δ1

∞
∑

i=0

e−θhti [e(β−δ1)ti+1 − e(β−δ1)ti ] (8)

and the total investment costs as
∞
∑

k=1

I
(

htk−1
, uk

)

e−δtk ,

where we use different discount rates δ1 and δ for the damage and investment costs that have the following
relationship:

δ1 = δ + ρ (1/year).

Hence the optimization problem can be formulated as follows:

min

{

S−
0

β − δ1

∞
∑

i=0

e−θ
∑

i

l=1
ul [e(β−δ1)ti+1 − e(β−δ1)ti ] +

∞
∑

i=1

I

(

i−1
∑

l=1

ul, ui

)

e−δti

}

, (9)

in which the optimization variables are u1, u2, ... and t1, t2, ....

2.2 Comments on model assumptions and parameter values

The model described above relies on several crucial assumptions, and the question is whether these are
justified. Moreover, the model contains several important parameters. We argue that the parameter
values used in this paper are reasonable, however for the final decision several separate more detailed
studies have been carried out to determine the parameter values more accurately taking into account
more hydraulic and local aspects (see Kind (2011)). Van Dantzig (1956) already extensively discussed
several assumptions and parameter values in his model. In this section we motivate several choices made
in our model.

Investment costs. For an accurate estimation of the investment costs we used the results of nu-
merous extensive Dutch studies on this issue, which were combined and summarized by Sprong (2008).
Using these cost estimation results, the parameters for the exponential (6) and quadratic investment cost
functions (7) were fitted for each dike ring. Note that in both cost functions, the costs of heightening the
dike depend on the current height. This is obvious, since the dikes also need to be made wider, which is
more costly for higher dikes.

As also extensively described in Opperman et al. (2009), the sinking of the deltas due to human
activity is also a major problem. However, it makes no difference for our mathematical model if we
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should implement measures that decrease water levels instead. Since the latter type of measures is
generally not possible along the coast, we will continue to focus only on heightening dikes. Also note
that heightening dikes is generally cheaper than lowering design-water levels by giving a river more space,
e.g., by enlarging the distance between the dikes along a river.

To place more emphasis on the current heightening by u, one could use the following alternative form
for the exponential investment costs (6):

I(h−, u) = (c + bu) eλ1h−+λ2u, u > 0, (10)

where λ1 and λ2 are different positive constants, with λ2 > λ1. In this paper we assume λ1 = λ2 = λ.
It may be worth mentioning, however, that the Dynamic Programming approach proposed in Section 4
still works for cases where λ1 and λ2 are different.

It seems natural to require that there is no advantage to perform a heightening in two parts. For
example, if a dike heightening of 100 cm is required, it should be cheaper to do this all at once, rather
than first heightening the dike by 30 cm, and subsequently by 70 cm. Hence, a natural requirement
seems to be that

I(h−, u1 + u2) ≤ I(h−, u1) + I(h− + u1, u2), ∀u1, u2 > 0. (11)

It can easily be checked that the quadratic investment cost function (7) satisfies this condition. The
exponential investment cost function satisfies the above condition when we have

bu1

(

eλu2 − 1
)

≤ c, ∀u1, u2 > 0. (12)

We have verified that indeed this condition is satisfied for all dike rings.
The cost functions for heightening dikes do not distinguish between the first and next dike heighten-

ings. This distinction may be necessary in several practical situations. It is easy to see that the Dynamic
Programming approach in Section 4 still works for such situations.

Damage costs. The value of the damage costs V −
0 for a certain dike ring is based on extensive

simulations by engineers of Deltares, using the information system HIS-SSM. Cost categories such as for
evacuation and rescue and immaterial damage costs (e.g. victims, suffering) were added, since they were
not included in this information system.

The value for the growth rate γ is based on growth scenarios for the Netherlands made by CPB
Netherlands Bureau for Economic Policy Analysis. This growth rate is used for the material as well as
immaterial damage. We therefore assume an income elasticity of one for some parts of the immaterial
damage.

In the model, the damage by a flood along the rivers depends on the height of the dike at that
moment. This is obvious, since the water level in such a dike ring area after a flood will be high if the
dikes are high. Research by engineers of Rijkswaterstaat (the implementing body of the Ministry of
Infrastructure and Environment) has shown that this can be expressed in a simple exponential manner.
This is a reasonable approximation for the change in the amount of loss within a relevant range for the
heightening of the dike along the rivers; see Kind (2011).

As pointed out in many papers, it may be dangerous to focus only on expected values when low
probabilities are combined with high costs. This is certainly a danger in our case, since the flood
probabilities are small and the damage costs are high. Van Dantzig (1956) already considered the
question whether a cost-benefit approach is appropriate: “... but also because probability principles are
here used in a case where there may not seem to be an adequately large number of comparable social
risks to make the concept of mathematical expectation a suitable basis for social choice”. The analysis
of Stern (2006) is also based on a cost-benefit analysis, and several economists have criticized that. For
example, Weitzman (2007) argues that Stern places too much emphasis on a cost-benefit analysis and
too little on the need for social insurance against low-probability catastrophic events. One may therefore
argue that a so-called risk-premium should be included. This can be done via the discount rate by
choosing δ1 < δ or more explicitly in the valuation of the damage itself. We show that our model allows
for such an addition, although it was finally decided to include this last type of risk-premium in the
actual calculations in another way.

To obtain a robust formulation, it is often advised to take higher-order moments into account. In
the field of asset liability, the mean-variance model, introduced by Markowitz (1952), is often used.
Vrijling et al. (1998) also propose to add second-order moments in probabilistic design models, including
the design of dikes.
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First note that since the investment costs are deterministic, the variance of these costs is zero.
Hence, it suffices to concentrate on the variance of the costs of flooding. We first derive expressions
for the second-order moments, and then show how to incorporate these moments into the mathematical
optimization models, which is the approach advocated by Vrijling et al. (1998).

The random variable Zt denotes the actual costs of flooding in year t. In year t we have the following
probabilistic situation: flooding occurs with probability Pt and no flooding with probability 1 − Pt. It
can easily be verified that the first two moments of Zt are:

E(Zt) = PtVt = St,

and
Var(Zt) = Pt(1 − Pt)V

2
t ≈ PtV

2
t ,

where the last approximation follows because Pt is very small. Using the results and notation of (4) and
(5), for the second-order moments we obtain

Var(Zt) ≈ PtV
2

t = S′
0eβ′te−θ′(Ht−H−

0 ), (13)

where
S′

0 = P −
0 (V −

0 )2, β′ = αη + 2γ, θ′ = α − 2ζ, (14)

and
σ(Zt) =

√

Var(Zt) ≈
√

Pt Vt = S∗
0eβ∗te−θ∗(Ht−H−

0 ), (15)

where

S∗
0 =

√

P −
0 V −

0 , β∗ =
1

2
αη + γ, θ∗ =

1

2
α − ζ. (16)

This means that both Var(Zt) and σ(Zt) have the same structure as St, only with slightly different values
for the constants S−

0 , β, and θ. However, one should remain careful as it may happen that θ′ or θ∗,
contrary to θ, becomes negative, which would mean that heighthening a dike will lead to more damage
instead of diminishing the expected loss. Finally, it may be better to use σ(Zt) instead of Var(Zt) for
scalability reasons, since σ(Zt) has the same dimension as E(Zt). Note, however, that σ(Zt) is still much
greater than E(Zt). See also Vrijling et al. (1998) for possible solutions to this scalability problem. A
possible way to include this risk measure in our model is to add the standard deviation multiplied by a
positive scalar κ to the objective. This does not fit in the standard formulation (9), but can easily be
added in the Dynamic Programming approach.

Flood probability and sea level rise. Van Dantzig (1956) also uses an exponential distribu-
tion for the flood probabilities. He indicates that this assumption may be questionable. For example,
Dillingh et al. (1993) uses extreme value theory to arrive at predictions for extreme water levels. However,
in our model the flood probability not only accounts for extreme water levels but also for the distribution
of the wind directions and forces, as well as for various local circumstances. Van Noortwijk et al. (2002)
show that an exponential distribution indeed yields a good approximation for the flood probabilities.
We therefore decided to keep the exponential distribution, but wish to point out that the Dynamic
Programming approach in Section 4 still works when using other distributions, such as the Weibull
distribution.

In our model we assume that, for instance due to the relative sea level rise, the distribution will shift
though the form of the distribution remains unchanged. This is possible because the distribution function
is only valid for very high water levels that have a probability of occurrence of less than 0.2 percent per
year. If more knowledge on this issue becomes available, then perhaps the Weibull distribution can
provide more degrees of freedom to model this.

An implicit assumption in our model is that a flooding in a certain dike ring does not influence the
probability of flooding in other dike rings. This assumption has been validated by Deltares. Moreover,
in our model we assume that if a flood occurs, the dikes are repaired immediately. In reality this will
take approximately until the next storm season, so the effect of this is negligible. Moreover, we assume
that dike heightenings are measured when they are completed, thereby decreasing the flood probability
immediately.

Much research has been done concerning the sea level rise in the future. Often such research is based
on Intergovernmental Panel on Climate Change (IPCC) global climate change scenarios. In our study we
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use the sea level scenarios of the Royal Netherlands Meteorological Institute (KNMI), see Katsman et al.
(2008), which are also based on the IPCC scenarios.

Discounting. Especially after the famous Stern Review (Stern (2006)), a major debate has been
ongoing about the correct discount rate in the cost-benefit analysis of climate economics. Stern (2006)
uses 1.4% for the discount rate (including a 0.1% risk premium), which is much lower than the 5−6% used
in many other climate economics models. It is clear that a higher discount rate leads to a postponement
of investments in dike heightening. Ackerman (2009) concludes that in the end, the choice of the discount
rate is an ethical and political choice.

In March 2007, the Dutch government fixed the value for the real discount rate in a cost-benefit
analysis. At that time the rate consisted of two components: the real risk-free discount rate, the value of
which the government fixed to 2.5% per year, and a macro-economic risk premium, which value has to be
estimated for each project separately. If one does not investigate the risk profile of the project, one has to
use 3%-points for the macro-economic risk premium. In September 2009 the Dutch government decided
that, for specific types of effects, the risk premium should be halved to 1.5%-points. This negative third
component represents the lowering of risk by projects that so to speak have some insurance character.
The project has to prevent negative external effects of an irreversible nature that carry a monetary value
in the cost-benefit analysis. Since a large part of the loss by flooding is irreversible, such as loss of human
lives, anxiety and hardship during and after the flooding and loss of personal belongings, dikes are a
good example of a project with effects that have to be discounted with half a risk premium. See Aalbers
(2009) for the economic background study on this issue. However, in the final cost-benefit analysis not
this method via different discount rates but a direct mark-up on (parts of) the damage costs has actually
been used to deal with risk-aversion.

In the calculations presented in this paper, the risk premium has also been differentiated between
the two components in the objective function. Based on a historical analysis, it is assumed that there
is no correlation between the actual development of the price index of investment costs and the actual
development of the volume index of the economy in the Netherlands. In that case, δ is the real risk-free
discount rate. The parameter ρ is an estimate of the macro-economic risk premium, diminished by the
insurance character of the project. Therefore, a risk premium of 1.5% is used, so δ1 will be set at 4%
per year. However, this system of discounting different items in different ways is now under discussion.
Using one or two discount rates does not change the structure of the model. To simplify notation, we
redefine β = αη + γ − ρ (cf. (5)), and use δ1 = δ in the remainder of this paper.

There is also much discussion among economists whether the discount rate should be kept constant
over time or declining. Several theories have been developed that conclude that the discount rate should
start out high, and decline in the future. However, as observed by Ackerman (2009), this has only a
limited impact in practice: “A high discount rate for the first few decades accomplishes most of the
shrinkage of future values; after that, it does not much matter whether the rate goes down”.

In the model we apply continuous compounding, and one may ask why discrete compounding was
not applied. In Den Hertog and Roos (2009) it is argued that the difference between continuous and
discrete compounding is not very significant. Since continuous compounding leads to a much simpler
analysis (see (8)) than discrete compounding, we have chosen for continuous compounding.

Finally, we emphasize our assumption that the parameter values are constant over time.

3 Periodic solutions

In this section we show that if the exponential investment cost function (6) is used, there is a periodic
solution that satisfies the first order conditions. This periodic solution can be derived analytically. We
label a solution periodic from heightening l on, when for some ν > 0 and p > 0 it holds that

uj = ν for all j ≥ l, (17)

and
tj = tl + (j − l)p, j ≥ l. (18)

We call a solution periodic if there exists an l ≥ 1 such that this solution is periodic from heightening
l on. In addition, we analyze which other investment cost functions may lead to periodic stationary
solutions. The quadratic investment cost function (7) is not among these investment cost functions.
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3.1 Exponential investment cost function

3.1.1 Theoretical analysis

In this subsection we consider the exponential investment cost function (6). We first derive the first-order
conditions for a stationary point of the objective in (9). To do so, we calculate all partial derivatives
with respect to ui and ti and set them equal to zero. For the derivatives with respect to ti this leads
to the well known criterion that at the moment of investment the First Year Rate of Return (FYRR)
has to be zero. Then we prove that the first order conditions have a periodic solution as defined by (17)
and (18) from heightening l = 2 on. This somewhat tedious task is performed in Den Hertog and Roos
(2009). The final results are

p =
θ + λ

β
ν, (19)

and ν is the solution of the following equation:

b

(c + bν)

(

eθν − 1
)

+

[

λ
(

eθν − 1
)

−
θδ

β − δ

(

e(θ−q)ν − 1
)

]

1

1 − e−qν
= 0, (20)

with

q =
δθ − (β − δ) λ

β
, (21)

and δ has to be large enough such that q > 0. In Den Hertog and Roos (2009) we prove that this
equation always has an unique positive solution, which can easily be computed using binary search.

For t1 we need to distinguish two cases depending on the size of the expected damage S−
0 at the start

compared to the optimal size of the expected damage just before the first normal investment after the
start. Therefore, it is handy to define s(ν):

s(ν) =
δ (c + bν) eλν

1 − e−θν
.

Case I: without back maintenance.

This case, in which back maintenance is absent, i.e., S−
0 ≤ s(ν), meaning that there is in general

no need to heighten the dike immediately, is identified by the fact that t1 as defined below is positive.
In Den Hertog and Roos (2009) we prove that in Case I the stationary point is the periodic solution
specified above in (19) and (20) from heightening l = 1 on and:

t1 =
1

β
ln

s(ν)

S−
0

. (22)

At time t1 the size of the expected damage has increased to s(ν), the FYRR criterion is met and the
first periodic heightening takes place.

Case II: with back maintenance.

This case is identified by the fact that t1 in (22) is negative. If this is the case, then we should already
have heightened the dike ring in the past, i.e., we have a backlog because S−

0 > s. Hence in this case we
need a heightening at t1 = t0 = 0. InDen Hertog and Roos (2009) we prove that in this case a stationary
point has the periodic solution specified above in (19) and (20) from heightening l = 2 on and:

t1 = 0,

t2 =
1

β

[

(θ + λ) u1 + ln
s(ν)

S−
0

]

> 0.

Moreover, u1 can be found by minimizing the univariate function

(c + bu1) eλu1 −
S−

0

β − δ
e−θu1 + g(ν)e−qu1 ,

where

g(ν) =
β (c + bν) eλν

(β − δ) (1 − e−qν)

(

S−
0

s(ν)

)

δ
β

,
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under the conditions that t2 > 0 and

q + 2λ

q + λ
b + λ(c + bu1) −

θ

δ
S−

0 e−(θ+λ)u1 > 0.

The last condition assures that the solution found is a minimum. In Den Hertog and Roos (2009) it is
shown that this univariate minimization can easily be done.

The solution given by either Case I or Case II is a stationary point. To prove that this solution is
the global optimum, we have to show that this periodic solution also satisfies the second-order sufficient
conditions. One can try to use the impulse-maximum principle (see Feichtinger and Hartl (1986)) to
prove optimality for the periodic solution. Although our problem (9) can easily be seen as an impulse
control problem, the second-order conditions for impulse control problems are not fulfilled, since the
investment cost function has fixed costs and therefore is not convex in the ‘control variable’ ui. Numerical
experiments in Section 4, however, show that this periodic solution is indeed the global optimum. More
numerical evidence for the global optimality of the periodic solution can be found in Den Hertog and Roos
(2009).

3.1.2 Numerical results

No. c b λ α η ζ V −
0 P −

0

10 16.6939 0.6258 0.0014 0.033027 0.320 0.003774 1564.9 0.00044
11 42.6200 1.7068 0.0000 0.032000 0.320 0.003469 1700.1 0.00117
15 125.6422 1.1268 0.0098 0.050200 0.760 0.003764 11810.4 0.00137
16 324.6287 2.1304 0.0100 0.057400 0.760 0.002032 22656.5 0.00110
22 154.4388 0.9325 0.0066 0.070000 0.620 0.002893 9641.1 0.00055
23 26.4653 0.5250 0.0034 0.053400 0.800 0.002031 61.6 0.00137
24 71.6923 1.0750 0.0059 0.043900 1.060 0.003733 2706.4 0.00188
35 49.7384 0.6888 0.0088 0.036000 1.060 0.004105 4534.7 0.00196
38 24.3404 0.7000 0.0040 0.025321 0.412 0.004153 3062.6 0.00171
41 58.8110 0.9250 0.0033 0.025321 0.422 0.002749 10013.1 0.00171
42 21.8254 0.4625 0.0019 0.026194 0.442 0.001241 1090.8 0.00171
43 340.5081 4.2975 0.0043 0.025321 0.448 0.002043 19767.6 0.00171
44 24.0977 0.7300 0.0054 0.031651 0.316 0.003485 37596.3 0.00033
45 3.4375 0.1375 0.0069 0.033027 0.320 0.002397 10421.2 0.00016
47 8.7813 0.3513 0.0026 0.029000 0.358 0.003257 1369.0 0.00171
48 35.6250 1.4250 0.0063 0.023019 0.496 0.003076 7046.4 0.00171
49 20.0000 0.8000 0.0046 0.034529 0.304 0.003744 823.3 0.00171
50 8.1250 0.3250 0.0000 0.033027 0.320 0.004033 2118.5 0.00171
51 15.0000 0.6000 0.0071 0.036173 0.294 0.004315 570.4 0.00171
52 49.2200 1.6075 0.0047 0.036173 0.304 0.001716 4025.6 0.00171
53 69.4565 1.1625 0.0028 0.031651 0.336 0.002700 9819.5 0.00171

Table 1: Input data for 21 dike rings.

From Rijkswaterstaat/Deltares we received data for all dike rings in the Netherlands. These data were
generated by water experts, sometimes using extensive simulations. The parameter values for 21 dike
rings along branches of the river Rhine are given in Table 1. We computed solutions for two combinations
of the discount rate δ and ρ, namely δ = 0.025 and ρ ∈ {0.015, 0.025}. These are shown in Table 2.
Moreover, in Figure 2 the flood probabilities for the optimal solutions for two dike rings are given. From
the results we make the following observations.

From Figure 2 we observe that the flood probability increases within an interval between two height-
enings, because of the expected rise of river discharges. Also note that if we take the probabilities just
after a heightening into account, then these probabilities decrease over time. This is due to the fact that
we take economic growth into account, which leads to increasing damage costs and thus requires lower
flood probabilities.
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ρ = 0.015, δ = 0.025 ρ = 0.025, δ = 0.025

No. year t1 u1 p ν costs year t1 u1 p ν costs

10 31 54 105 54 67.4 75 41 225 41 52.4

11 24 58 109 58 181.1 58 43 236 43 146.3

15 0 78 73 56 820.2 0 75 88 52 701.2

16 0 71 76 56 1634.5 0 68 88 52 1418.0

22 0 64 88 58 450.0 0 60 102 53 407.3

23 46 59 68 59 51.0 57 55 79 55 40.3

24 0 81 59 66 480.4 0 78 69 62 419.8

35 0 91 59 62 575.5 0 89 71 58 475.6

38 0 93 96 59 221.2 0 84 211 46 185.3

41 0 129 116 71 395.5 0 117 251 55 342.6

42 0 84 111 69 103.7 0 72 220 54 89.2

43 0 91 118 70 1654.9 0 79 241 55 1400.5

44 0 98 104 47 256.8 0 91 242 36 220.1

45 0 81 95 39 43.1 0 76 207 31 36.5

47 0 91 96 52 79.6 0 82 211 40 68.6

48 0 84 78 49 550.7 0 79 160 39 449.3

49 3 43 98 43 114.9 0 34 215 33 93.9

50 0 124 108 58 61.4 0 111 227 44 55.6

51 11 38 96 38 87.3 18 30 208 30 69.7

52 0 62 106 43 308.0 0 54 222 34 262.0

53 0 110 126 62 361.9 0 99 274 49 319.2

Table 2: Results for the 21 dike rings in Table 1.

It emerges that, for almost all dike ring areas, the current safety levels are lower than calculated via
our model and therefore need an immediate heightening. Dike ring area 15 is one of these, since there
is an immediate heightening at t1 = 0. See e.g. Figure 2. It appears that 16 out of the 21 dike rings
studied in this paper need an immediate heightening. The reason for this is that the estimates for P −

0

were raised considerably as a consequence of the very high river discharges in both 1993 and 1995. The
Dutch project “Room for the River”, started in 2006, aims to bring the safety levels back to their legal
values by 2015.

The figures in Table 2 show that for some dike rings the length of the period p and the number of
years till the first heightening (t1) are quite sensitive to the risk premium (and thus to the economic
growth rate and the velocity of relative sea level rise). For example, for dike ring 11 the values of t1 are
24 and 58, respectively.

3.2 Other investment cost functions

In this subsection we discuss which classes of investment cost functions can be met with a periodic
solution that satisfies the necessary first-order conditions.

Using the analysis in Den Hertog and Roos (2009) it can be shown that such investment cost functions
should be such that

I
(

htj
, uj+1

)

I(htj−1
, uj)

=
I (u1 + (j − 1)ν, ν)

I(u1 + (j − 2)ν, ν)
(23)

is independent of j, for j ≥ 2. We proceed by checking if this condition is satisfied for several investment
cost functions. We start with the two investment cost functions considered before.
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Figure 2: Solution for dike ring 15 (left) and 22 (right) with exponential investment costs. The blue
curves represent Pt, the green lines P −

0 , and the red lines the current safety standard.

For the exponential investment cost function (6) we have

I (u1 + (j − 1)ν, ν)

I(u1 + (j − 2)ν, ν)
=

(c + bν)eλ(u1+jν)

(c + bν)eλ(u1+(j−1)ν)
= eλν ,

which is independent of j. This is in agreement with the results in Section 3.1, namely that for the
exponential investment cost function there is a periodic solution that satisfies the first order conditions.

For the quadratic investment cost function (7), we have

I (u1 + (j − 1)ν, ν)

I(u1 + (j − 2)ν, ν)
=

a0 (u1 + jν)
2

+ b0ν + c0

a0 (u1 + (j − 1)ν)
2

+ b0ν + c0

;

since a0 > 0, the last expression is dependent on j. Hence, the quadratic investment cost function will
not yield an optimal solution that is periodic. This is in accordance with the numerical results found in
Section 4.2.

We discussed an exponential investment cost function (10) that can be used to give more (or less)
emphasis to the last heightening than to the previous heightenings. For this function we have

I (u1 + (j − 1)ν, ν)

I(u1 + (j − 2)ν, ν)
=

(c + bν)eλ1(u1+(j−1)ν)+λ2ν

(c + bν)eλ1(u1+(j−2)ν)+λ2ν
= eλ1ν ,

which is independent of j. This implies that (10) satisfies (23).
A final observation is that if we have two investment cost functions I(h, u) and Ĩ(h, u) that satisfy

the above condition for a periodic stationary point, then so does their product I(h, u) × Ĩ(h, u).

4 Dynamic Programming approach

4.1 The method

In the previous section we showed that for certain classes of the investment cost function, we can find
the solution analytically. However, for quadratic investment cost functions (7), problem (9) cannot be
solved analytically. In this section we show that this problem can be solved using Dynamic Programming
(DP). This approach can also be used if, for example, other choices for the damage costs or the flood
probability are made.

In the Dynamic Programming approach we distinguish stages and states of the process under con-
sideration, and transitions from one state in a certain stage to another state in the next stage. Each
transition is associated with costs, and the aim is to find a sequence of transitions starting at the initial
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state and ending at a desired state that minimizes the total costs of these transitions. Finding such a
sequence can be achieved efficiently by using a recursive relation.

First of all we truncate the infinite horizon in (9) to T years. Let us define the stages as the years
t = −1, 0, 1, 2, ..., T , in which t = −1 is the time just before t = 0. Let us define a state at stage t as
ht, where ht is a possible height of the dike at time t. The initial state at stage t = −1 is h−1 = 0,
the current height of the dike. We use a ‘safe’ upper bound H̄ for a safe dike height at the end of the
planning horizon. We discretize the possible height (we will use cms). It is very easy to give a priori
bounds for the flood probabilities. We use these upper bounds to restrict the possible states:

Pt = P −
0 eαηte−α(Ht−H−

0 ) ≤ Pmax, ∀t.

By taking logarithms at both sides, while using the definition of ht in (5), we obtain

ht ≥ ηt +
1

η
ln

P −
0

Pmax

.

Now let Ht denote the set of all feasible dike heights at time t.
We assume that a dike heightening is accomplished within one time unit. Then, in our model a

transition can occur from state ht in stage t to state ht+1 in stage t + 1 only if ht+1 ≥ ht. We denote
the corresponding transition costs as ct(ht, ht+1). These costs consist of the investment costs (which are
positive only if ht+1 > ht), and the expected damage costs in the period [t, t + 1], for t = 0, 1, ..., T − 1:

ct(ht, ht+1) =

∫ t+1

t

Ste
−δtdt + I(ht, ht+1 − ht) e−δ(t+1).

For t = −1 we have
c−1(h−1, h0) = I(0, h0).

The Dynamic Programming approach is based on the recursive relation

ft(ht) = min
ht≤ht+1∈Ht+1

{ft+1(ht+1) + ct(ht, ht+1)} , t < T, ht ∈ Ht, (24)

in which ft(ht) denotes the minimal costs to cover years t, t + 1, ..., T, T + 1, ..., ∞, starting in state ht.
Now let’s take a careful look at fT (h), since we truncate the infinite horizon at t = T . Not taking into

account what happens after T , minimizing total costs before t = T will result in postponing investments,
so that after t = T , high investments may have to be made. To avoid this, and to make our models
more realistic at the end of the planning period, we take into account costs after the planning horizon.
To that end, it is common in Dynamic Programming approaches to add a so-called salvage term, which
can be done in several ways. However, we assume that after the planning horizon there are no changes
in the system (i.e., β = 0 and hence ρ = 0), and there are no dike heightenings and hence no investment
costs after the planning horizon. The expected damage after T is then given by

ST

∫ ∞

T

e−δtdt =
ST e−δt

−δ

∣

∣

∣

∣

∞

T

=
ST e−δT

δ
.

Hence, we have

fT (h) =
ST e−δT

δ
. (25)

Using this formula in the recursion formula (24), we can compute the optimal solution, starting at the
last stage T .

Note that this Dynamic Programming approach is very flexible with respect to, for instance, the choice
for the investment cost function or the flood probability. As long as we can (numerically) compute the
transition costs we can apply the Dynamic Programming approach. Other expressions for, say, Pt or Vt,
can be used as well, and there is no need for functions to be convex, for example.
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4.2 Numerical results

In Table 3 we summarize the input data for the quadratic investment cost function (7) for 5 dike rings.
We calculated the Dynamic Programming solutions for these dike rings using both the exponential (6)
and the quadratic investment cost functions (7). In our experiments the salvage term (25) was included
in the objective function. We took the number of height levels as 50 and T = 300. No probability
constraints were used. The running time varied between 3.9 and 4.5 seconds on a Microsoft Windows
PC (1.86 GHz, 3.5 GB RAM) under Matlab. We used δ = 0.04 and ρ = 0 in the calculations. The
periodic solutions for the case of exponential investment costs are given in Table 4.

No. 10 11 15 16 22

a0 0.0004 0 0.027 0.102 0.0154

b0 0.7637 1.7168 3.779 3.1956 2.199

c0 12.603 42.003 67.699 319.25 141.01

Table 3: Data for the quadratic investment cost function for dike rings 10, 11, 15, 16, 22.

No. ν p u1 t1 t2 Inv. Dam. Tot. costs

10 56.96 57.12 56.96 45.80 102.92 10.20 29.84 40.04

11 62.42 58.89 62.42 42.44 101.33 30.18 80.05 110.23

15 53.29 51.54 55.96 0.00 51.20 415.50 129.68 545.18

16 52.59 54.04 52.59 3.50 57.54 797.65 292.03 1089.68

22 53.70 62.43 53.70 12.72 75.16 198.53 110.72 309.25

Table 4: Periodic solutions for dike rings 10, 11, 15, 16, 22, with δ = 0.04, ρ = 0, and exponential
investment costs.

The Dynamic Programming results for the exponential and quadratic investment cost functions are
presented in Tables 5 and 6, respectively. From the results we draw the following observations.

Comparing the Dynamic Programming solutions for the exponential investment cost function in Table
5 with those in Table 4, one can observe that the (total) cost values are almost the same. There are
three obvious sources for the (minor) differences: first, the truncation to a finite horizon T ; second, the
discretization of the problem in the Dynamic Programming approach, which inherently introduces some
inaccuracy; and third, numerical inaccuracy in the computations. Given this, it is surprising that the
differences are so small.

Moreover, the Dynamic Programming solutions for the exponential investment cost function are
almost periodic. Only at the end of the planning period there seems to be no periodicity. But this is in
all likelihood due to the truncation of the planning period, which disturbs the periodicity at the end of
the planning period. This was confirmed when we ran our program with T = 600 instead of T = 300.
In all cases we obtained solutions that were periodic with a few exceptions at the end of the planning
period. This is in accordance with the analysis given in Section 3.1. The solution for the quadratic
investment cost function is clearly not periodic, which is in accordance with the analysis given in Section
3.2.

The difference in the results between the exponential and quadratic investment cost functions is not
very significant. It seems that the quadratic investment cost function tends to perform the first height-
enings slightly earlier, but the amount of heightening is lower. The time between two heightenings seems
to increase over time for the quadratic investment cost function, while for the exponential investment
cost function the time between two heightenings is more or less constant over time.

There are several dikes that need to be heightened immediately. Dike ring area 15 is one of them,
since there is an immediate heightening at t1 = 0. Note that this is the case for both the exponential
and the quadratic investment cost functions.
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No. 10 11 15 16 22

Heightenings 46 : 57.60 43 : 63.36 0 : 54.72 4 : 54.72 12 : 52.08

(tk : uk) 104 : 57.60 103 : 63.36 50 : 54.72 60 : 54.72 73 : 52.08

162 : 57.60 162 : 61.44 103 : 54.72 116 : 54.72 133 : 52.08

219 : 55.68 220 : 61.44 156 : 54.72 171 : 50.16 194 : 52.08

274 : 51.84 277 : 53.76 209 : 54.72 223 : 50.16 254 : 52.08

262 : 54.72 274 : 45.60

hT 280.32 303.36 328.32 310.08 260.4

Investment costs 10.16 29.70 413.39 796.31 202.09

Damage costs 29.87 80.54 131.95 294.13 107.33

Total costs 40.04 110.23 545.34 1090.44 309.41

Table 5: Dynamic Programming solutions for 5 dike rings, with exponential investment costs.

No. 10 11 15 16 22

Heightenings 46 : 53.76 43 : 61.44 0 : 45.60 3 : 50.16 12 : 48.36

(tk : uk) 99 : 53.76 101 : 63.36 42 : 50.16 59 : 54.72 69 : 52.08

155 : 57.60 160 : 61.44 92 : 59.28 118 : 63.84 131 : 55.80

214 : 61.44 218 : 59.52 149 : 68.40 183 : 68.40 197 : 59.52

277 : 55.68 272 : 42.24 212 : 77.52 250 : 72.96 265 : 55.80

280 : 63.84

hT 282.24 288.00 364.80 310.08 271.56

Investment costs 9.97 29.33 418.94 840.70 205.15

Damage costs 30.17 80.90 163.35 317.51 112.09

Total costs 40.14 110.24 582.28 1158.21 317.24

Table 6: Dynamic Programming solutions for 5 dike rings, with quadratic investment costs.

5 Concluding remarks

5.1 Contribution to OR and public interest

In the paper we defined an important policy problem: to determine the safety standards for the dikes
in the Netherlands to protect against floods, using a cost-benefit analysis. Moreover, we developed a
novel model for this problem, and developed a method to solve the model. The model and method were
implemented as a user-friendly software package by the company HKV. This software has by now been
used to provide the Dutch government with specific policy recommendations with respect to dike safety
standards (see Kind (2011)). It is expected that in the near future the Dutch Water Act will be adapted
accordingly, increasing the safety standards for many dike rings in the Netherlands. This also means a
significant increase in expenses for protection against flooding in the Netherlands in the near future.

We also note that this problem and model are relevant for many other deltas in the world that are
threatened by floods. This growing threat has been described extensively in a recent paper (Syvitski et al.
(2009)). The paper presents an assessment of 33 important deltas across the world, noting that: “in the
past decade, 85% of these deltas experienced severe flooding, resulting in the temporary submergence of
260,000 km2. Moreover, it is conservatively estimated that the delta surface area vulnerable to flooding
could increase by 50% under the current projected values for sea level rise in the twenty-first century.
Close to half a billion people live on or near deltas, often in megacities. Twentieth-century catchment
developments, and population and economic growth have had a profound impact on deltas. As a result,
these environments and their populations are under a growing risk of coastal flooding, wetland loss,
shoreline retreat and loss of infrastructure. More than 10 million people a year experience flooding due
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to storm surges alone.”.
Concerning the main mathematical contributions, we mention that we corrected and extended Van

Dantzig’s model and solution in several ways. Moreover, for a class of the investment function we were
able to prove that there is a periodic solution that satisfies the first order conditions, and we derived
formulas to calculate this solution. For other choices of the investment cost function we developed a
Dynamic Programming approach.

5.2 Further research

It is an interesting topic for further research to prove that the periodic solution derived for the exponential
cost function is really the global optimum. There is much numerical evidence that this is the case, but
a mathematical proof is still missing.

In the model we assume that the dike ring is homogeneous, i.e. that the characteristics for, for
instance, the flood probability and the investment costs are the same for all dikes in the dike ring.
However, this does not necessarily apply for many of the dike rings in the Netherlands, since in practice
there are dike rings with up to 10 different dike segments. For such cases the number of possible
states in the Dynamic Programming approach explodes, and for this a different approach is proposed in
Brekelmans et al. (2012).

The model, method and theory developed in this paper may also be used for other optimization
problems that have a similar structure. This is a subject for further research, with a particular focus on
maintenance optimization problems.

Several parameters in the model are also uncertain, especially the parameters α, γ, η, and P −
0 .

In Brekelmans et al. (2012) we propose a regret approach to obtain solutions that are robust against
uncertainty in these parameters.

It is worthwhile analyzing the effect of partitioning a certain dike ring area by what is termed a
‘partitioning dike’. The model needs to be adapted to study the effect of such a partitioning.

It would also be extremely interesting to apply our model to other deltas, such as New Orleans.
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